summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDarrick J. Wong <djwong@kernel.org>2022-04-25 18:37:06 -0700
committerDarrick J. Wong <djwong@kernel.org>2022-04-28 10:24:38 -0700
commit1edf8056131aca6fe7f98873da8297e6fa279d8c (patch)
treea4e060a6f074ed92777c40ab3c7ad160b93d098f
parent75d893d19c8e1b4bf4a9acd613fe5e7a80b58974 (diff)
xfs: speed up write operations by using non-overlapped lookups when possiblermap-speedups-5.19_2022-04-28
Reverse mapping on a reflink-capable filesystem has some pretty high overhead when performing file operations. This is because the rmap records for logically and physically adjacent extents might not be adjacent in the rmap index due to data block sharing. As a result, we use expensive overlapped-interval btree search, which walks every record that overlaps with the supplied key in the hopes of finding the record. However, profiling data shows that when the index contains a record that is an exact match for a query key, the non-overlapped btree search function can find the record much faster than the overlapped version. Try the non-overlapped lookup first when we're trying to find the left neighbor rmap record for a given file mapping, which makes unwritten extent conversion and remap operations run faster if data block sharing is minimal in this part of the filesystem. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
-rw-r--r--fs/xfs/libxfs/xfs_rmap.c50
-rw-r--r--fs/xfs/libxfs/xfs_rmap.h3
2 files changed, 36 insertions, 17 deletions
diff --git a/fs/xfs/libxfs/xfs_rmap.c b/fs/xfs/libxfs/xfs_rmap.c
index 6f74dcda44b5..2845019d31da 100644
--- a/fs/xfs/libxfs/xfs_rmap.c
+++ b/fs/xfs/libxfs/xfs_rmap.c
@@ -265,7 +265,6 @@ out_bad_rec:
struct xfs_find_left_neighbor_info {
struct xfs_rmap_irec high;
struct xfs_rmap_irec *irec;
- int *stat;
};
/* For each rmap given, figure out if it matches the key we want. */
@@ -290,7 +289,6 @@ xfs_rmap_find_left_neighbor_helper(
return 0;
*info->irec = *rec;
- *info->stat = 1;
return -ECANCELED;
}
@@ -299,7 +297,7 @@ xfs_rmap_find_left_neighbor_helper(
* return a match with the same owner and adjacent physical and logical
* block ranges.
*/
-int
+STATIC int
xfs_rmap_find_left_neighbor(
struct xfs_btree_cur *cur,
xfs_agblock_t bno,
@@ -310,6 +308,7 @@ xfs_rmap_find_left_neighbor(
int *stat)
{
struct xfs_find_left_neighbor_info info;
+ int found = 0;
int error;
*stat = 0;
@@ -327,21 +326,44 @@ xfs_rmap_find_left_neighbor(
info.high.rm_flags = flags;
info.high.rm_blockcount = 0;
info.irec = irec;
- info.stat = stat;
trace_xfs_rmap_find_left_neighbor_query(cur->bc_mp,
cur->bc_ag.pag->pag_agno, bno, 0, owner, offset, flags);
- error = xfs_rmap_query_range(cur, &info.high, &info.high,
- xfs_rmap_find_left_neighbor_helper, &info);
- if (error == -ECANCELED)
- error = 0;
- if (*stat)
- trace_xfs_rmap_find_left_neighbor_result(cur->bc_mp,
- cur->bc_ag.pag->pag_agno, irec->rm_startblock,
- irec->rm_blockcount, irec->rm_owner,
- irec->rm_offset, irec->rm_flags);
- return error;
+ /*
+ * Historically, we always used the range query to walk every reverse
+ * mapping that could possibly overlap the key that the caller asked
+ * for, and filter out the ones that don't. That is very slow when
+ * there are a lot of records.
+ *
+ * However, there are two scenarios where the classic btree search can
+ * produce correct results -- if the index contains a record that is an
+ * exact match for the lookup key; and if there are no other records
+ * between the record we want and the key we supplied.
+ *
+ * As an optimization, try a non-overlapped lookup first. This makes
+ * extent conversion and remap operations run a bit faster if the
+ * physical extents aren't being shared. If we don't find what we
+ * want, we fall back to the overlapped query.
+ */
+ error = xfs_rmap_lookup_le(cur, bno, owner, offset, flags, irec,
+ &found);
+ if (error)
+ return error;
+ if (found)
+ error = xfs_rmap_find_left_neighbor_helper(cur, irec, &info);
+ if (!error)
+ error = xfs_rmap_query_range(cur, &info.high, &info.high,
+ xfs_rmap_find_left_neighbor_helper, &info);
+ if (error != -ECANCELED)
+ return error;
+
+ *stat = 1;
+ trace_xfs_rmap_find_left_neighbor_result(cur->bc_mp,
+ cur->bc_ag.pag->pag_agno, irec->rm_startblock,
+ irec->rm_blockcount, irec->rm_owner, irec->rm_offset,
+ irec->rm_flags);
+ return 0;
}
/* For each rmap given, figure out if it matches the key we want. */
diff --git a/fs/xfs/libxfs/xfs_rmap.h b/fs/xfs/libxfs/xfs_rmap.h
index 11ec9406a0ea..54741a591a17 100644
--- a/fs/xfs/libxfs/xfs_rmap.h
+++ b/fs/xfs/libxfs/xfs_rmap.h
@@ -184,9 +184,6 @@ int xfs_rmap_finish_one(struct xfs_trans *tp, enum xfs_rmap_intent_type type,
xfs_fsblock_t startblock, xfs_filblks_t blockcount,
xfs_exntst_t state, struct xfs_btree_cur **pcur);
-int xfs_rmap_find_left_neighbor(struct xfs_btree_cur *cur, xfs_agblock_t bno,
- uint64_t owner, uint64_t offset, unsigned int flags,
- struct xfs_rmap_irec *irec, int *stat);
int xfs_rmap_lookup_le_range(struct xfs_btree_cur *cur, xfs_agblock_t bno,
uint64_t owner, uint64_t offset, unsigned int flags,
struct xfs_rmap_irec *irec, int *stat);