Age | Commit message (Collapse) | Author |
|
|
|
|
|
also fix some dirent bugs
|
|
bch2_btree_node_relock() and __bch2_btree_iter_relock() are now only
used for relocking, not upgrading or downgrading locks, so we can split
out bch2_btree_node_upgrade() and slim down the fast path.
|
|
|
|
|
|
Replaces bch2_btree_iter_set_locks_want() - also add more assertions
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
|
|
|
|
fixes b0f3e786995cb3b12975503f963e469db5a4f09b
|
|
Implement a superblock field so we don't have to read the journal after
a clean shutdown (and more importantly, we can verify what we find in
the journal after a clean shutdown)
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
|
|
|
|
|
|
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
|
|
The sysfs interface is crap and will be changed
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
|
|
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
|
|
|
|
|
|
|
|
truncate was leaving extents past the end of i_size. Turns out, it was
doing so because it thought it wasn't shrinking the file when it was,
and it thought it wasn't shrinking because i_size had gotten screwed up -
the in memory i_size was smaller than the on disk i_size, which is never
supposed to happen.
Also turns out, the thing that was screwing up i_size was truncate -
specifically, the error path when the filemap_write_and_wait_range()
call fails.
Besides fixing truncate itself, this patch also fixes and makes rigorous
a lot of the locking pertaining to i_size and ei_inode (the cached on
disk inode in bch_inode_info).
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
|
|
|
|
BTREE_INSERT_NOUNLOCK means after a sucessful btree update, do not drop
any locks (e.g. while merging nodes).
This is going to be used to fix some locking primarily related to
bi_size in bch_inode_info.
|
|
|
|
|
|
If fsck finds an unreachable directory, it could just be because we
crashed between deleting the dirent and deleting the inode, since that
isn't done atomically yet - it's only a real error if the directory
isn't empty
|
|
was causing spurious journal replay failures
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fork of drivers/md/bcache
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
|
|
|
|
New helper for bcachefs - bcachefs doesn't want the
inode_dec_link_count() call that d_tmpfile does, it handles i_nlink on
its own atomically with other btree updates
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
|
|
New helper for bcachefs, so that when we race inserting an inode we can
atomically grab a ref to the inode already in the inode cache.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
|
|
Add a per address space lock around adding pages to the pagecache - making it
possible for fallocate INSERT_RANGE/COLLAPSE_RANGE to work correctly, and also
hopefully making truncate and dio a bit saner.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
|
|
Merge misc fixes from Andrew Morton:
"2 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
hugetlbfs: fix races and page leaks during migration
kasan: turn off asan-stack for clang-8 and earlier
|
|
hugetlb pages should only be migrated if they are 'active'. The
routines set/clear_page_huge_active() modify the active state of hugetlb
pages.
When a new hugetlb page is allocated at fault time, set_page_huge_active
is called before the page is locked. Therefore, another thread could
race and migrate the page while it is being added to page table by the
fault code. This race is somewhat hard to trigger, but can be seen by
strategically adding udelay to simulate worst case scheduling behavior.
Depending on 'how' the code races, various BUG()s could be triggered.
To address this issue, simply delay the set_page_huge_active call until
after the page is successfully added to the page table.
Hugetlb pages can also be leaked at migration time if the pages are
associated with a file in an explicitly mounted hugetlbfs filesystem.
For example, consider a two node system with 4GB worth of huge pages
available. A program mmaps a 2G file in a hugetlbfs filesystem. It
then migrates the pages associated with the file from one node to
another. When the program exits, huge page counts are as follows:
node0
1024 free_hugepages
1024 nr_hugepages
node1
0 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
That is as expected. 2G of huge pages are taken from the free_hugepages
counts, and 2G is the size of the file in the explicitly mounted
filesystem. If the file is then removed, the counts become:
node0
1024 free_hugepages
1024 nr_hugepages
node1
1024 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
Note that the filesystem still shows 2G of pages used, while there
actually are no huge pages in use. The only way to 'fix' the filesystem
accounting is to unmount the filesystem
If a hugetlb page is associated with an explicitly mounted filesystem,
this information in contained in the page_private field. At migration
time, this information is not preserved. To fix, simply transfer
page_private from old to new page at migration time if necessary.
There is a related race with removing a huge page from a file and
migration. When a huge page is removed from the pagecache, the
page_mapping() field is cleared, yet page_private remains set until the
page is actually freed by free_huge_page(). A page could be migrated
while in this state. However, since page_mapping() is not set the
hugetlbfs specific routine to transfer page_private is not called and we
leak the page count in the filesystem.
To fix that, check for this condition before migrating a huge page. If
the condition is detected, return EBUSY for the page.
Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com
Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com
Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
[mike.kravetz@oracle.com: v2]
Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com
[mike.kravetz@oracle.com: update comment and changelog]
Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/hubcap/linux
Pull orangefs fixlet from Mike Marshall:
"Remove two un-needed BUG_ONs"
* tag 'for-linus-5.0-ofs1' of git://git.kernel.org/pub/scm/linux/kernel/git/hubcap/linux:
orangefs: remove two un-needed BUG_ONs...
|
|
When a cell with a volume location server list is added manually by
echoing the details into /proc/net/afs/cells, a record is added but the
flag saying it has been looked up isn't set.
This causes the VL server rotation code to wait forever, with the top of
/proc/pid/stack looking like:
afs_select_vlserver+0x3a6/0x6f3
afs_vl_lookup_vldb+0x4b/0x92
afs_create_volume+0x25/0x1b9
...
with the thread stuck in afs_start_vl_iteration() waiting for
AFS_CELL_FL_NO_LOOKUP_YET to be cleared.
Fix this by clearing AFS_CELL_FL_NO_LOOKUP_YET when setting up a record
if that record's details were supplied manually.
Fixes: 0a5143f2f89c ("afs: Implement VL server rotation")
Reported-by: Dave Botsch <dwb7@cornell.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit 9da3f2b74054406f87dff7101a569217ffceb29b.
It was well-intentioned, but wrong. Overriding the exception tables for
instructions for random reasons is just wrong, and that is what the new
code did.
It caused problems for tracing, and it caused problems for strncpy_from_user(),
because the new checks made perfectly valid use cases break, rather than
catch things that did bad things.
Unchecked user space accesses are a problem, but that's not a reason to
add invalid checks that then people have to work around with silly flags
(in this case, that 'kernel_uaccess_faults_ok' flag, which is just an
odd way to say "this commit was wrong" and was sprinked into random
places to hide the wrongness).
The real fix to unchecked user space accesses is to get rid of the
special "let's not check __get_user() and __put_user() at all" logic.
Make __{get|put}_user() be just aliases to the regular {get|put}_user()
functions, and make it impossible to access user space without having
the proper checks in places.
The raison d'être of the special double-underscore versions used to be
that the range check was expensive, and if you did multiple user
accesses, you'd do the range check up front (like the signal frame
handling code, for example). But SMAP (on x86) and PAN (on ARM) have
made that optimization pointless, because the _real_ expense is the "set
CPU flag to allow user space access".
Do let's not break the valid cases to catch invalid cases that shouldn't
even exist.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tobin C. Harding <tobin@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull ceph fixes from Ilya Dryomov:
"Two bug fixes for old issues, both marked for stable"
* tag 'ceph-for-5.0-rc8' of git://github.com/ceph/ceph-client:
ceph: avoid repeatedly adding inode to mdsc->snap_flush_list
libceph: handle an empty authorize reply
|