summaryrefslogtreecommitdiff
path: root/kernel/cgroup/cgroup.c
AgeCommit message (Collapse)Author
2021-02-22Merge branch 'for-5.12' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "Nothing interesting. Just two minor patches" * 'for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cpuset: fix typos in comments cgroup: cgroup.{procs,threads} factor out common parts
2021-01-24namei: make permission helpers idmapped mount awareChristian Brauner
The two helpers inode_permission() and generic_permission() are used by the vfs to perform basic permission checking by verifying that the caller is privileged over an inode. In order to handle idmapped mounts we extend the two helpers with an additional user namespace argument. On idmapped mounts the two helpers will make sure to map the inode according to the mount's user namespace and then peform identical permission checks to inode_permission() and generic_permission(). If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-6-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: James Morris <jamorris@linux.microsoft.com> Acked-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-19cgroup: fix psi monitor for root cgroupOdin Ugedal
Fix NULL pointer dereference when adding new psi monitor to the root cgroup. PSI files for root cgroup was introduced in df5ba5be742 by using system wide psi struct when reading, but file write/monitor was not properly fixed. Since the PSI config for the root cgroup isn't initialized, the current implementation tries to lock a NULL ptr, resulting in a crash. Can be triggered by running this as root: $ tee /sys/fs/cgroup/cpu.pressure <<< "some 10000 1000000" Signed-off-by: Odin Ugedal <odin@uged.al> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Dan Schatzberg <dschatzberg@fb.com> Fixes: df5ba5be7425 ("kernel/sched/psi.c: expose pressure metrics on root cgroup") Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: stable@vger.kernel.org # 5.2+ Signed-off-by: Tejun Heo <tj@kernel.org>
2021-01-15cgroup: cgroup.{procs,threads} factor out common partsMichal Koutný
The functions cgroup_threads_write and cgroup_procs_write are almost identical. In order to reduce duplication, factor out the common code in similar fashion we already do for other threadgroup/task functions. No functional changes are intended. Suggested-by: Hao Lee <haolee.swjtu@gmail.com> Signed-off-by: Michal Koutný <mkoutny@suse.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-12-28Merge branch 'for-5.11' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "These three patches were scheduled for the merge window but I forgot to send them out. Sorry about that. None of them are significant and they fit well in a fix pull request too - two are cosmetic and one fixes a memory leak in the mount option parsing path" * 'for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: Fix memory leak when parsing multiple source parameters cgroup/cgroup.c: replace 'of->kn->priv' with of_cft() kernel: cgroup: Mundane spelling fixes throughout the file
2020-12-15Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge misc updates from Andrew Morton: - a few random little subsystems - almost all of the MM patches which are staged ahead of linux-next material. I'll trickle to post-linux-next work in as the dependents get merged up. Subsystems affected by this patch series: kthread, kbuild, ide, ntfs, ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache, gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation, kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction, oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc, uaccess, zram, and cleanups). * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits) mm: cleanup kstrto*() usage mm: fix fall-through warnings for Clang mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at mm: shmem: convert shmem_enabled_show to use sysfs_emit_at mm:backing-dev: use sysfs_emit in macro defining functions mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening mm: use sysfs_emit for struct kobject * uses mm: fix kernel-doc markups zram: break the strict dependency from lzo zram: add stat to gather incompressible pages since zram set up zram: support page writeback mm/process_vm_access: remove redundant initialization of iov_r mm/zsmalloc.c: rework the list_add code in insert_zspage() mm/zswap: move to use crypto_acomp API for hardware acceleration mm/zswap: fix passing zero to 'PTR_ERR' warning mm/zswap: make struct kernel_param_ops definitions const userfaultfd/selftests: hint the test runner on required privilege userfaultfd/selftests: fix retval check for userfaultfd_open() userfaultfd/selftests: always dump something in modes userfaultfd: selftests: make __{s,u}64 format specifiers portable ...
2020-12-15cgroup: remove obsoleted broken_hierarchy and warned_broken_hierarchyRoman Gushchin
With the deprecation of the non-hierarchical mode of the memory controller there are no more examples of broken hierarchies left. Let's remove the cgroup core code which was supposed to print warnings about creating of broken hierarchies. Link: https://lkml.kernel.org/r/20201110220800.929549-4-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm: memcg: deprecate the non-hierarchical modeRoman Gushchin
Patch series "mm: memcg: deprecate cgroup v1 non-hierarchical mode", v1. The non-hierarchical cgroup v1 mode is a legacy of early days of the memory controller and doesn't bring any value today. However, it complicates the code and creates many edge cases all over the memory controller code. It's a good time to deprecate it completely. This patchset removes the internal logic, adjusts the user interface and updates the documentation. The alt patch removes some bits of the cgroup core code, which become obsolete. Michal Hocko said: "All that we know today is that we have a warning in place to complain loudly when somebody relies on use_hierarchy=0 with a deeper hierarchy. For all those years we have seen _zero_ reports that would describe a sensible usecase. Moreover we (SUSE) have backported this warning into old distribution kernels (since 3.0 based kernels) to extend the coverage and didn't hear even for users who adopt new kernels only very slowly. The only report we have seen so far was a LTP test suite which doesn't really reflect any real life usecase" This patch (of 3): The non-hierarchical cgroup v1 mode is a legacy of early days of the memory controller and doesn't bring any value today. However, it complicates the code and creates many edge cases all over the memory controller code. It's a good time to deprecate it completely. Functionally this patch enabled is by default for all cgroups and forbids switching it off. Nothing changes if cgroup v2 is used: hierarchical mode was enforced from scratch. To protect the ABI memory.use_hierarchy interface is preserved with a limited functionality: reading always returns "1", writing of "1" passes silently, writing of any other value fails with -EINVAL and a warning to dmesg (on the first occasion). Link: https://lkml.kernel.org/r/20201110220800.929549-1-guro@fb.com Link: https://lkml.kernel.org/r/20201110220800.929549-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-14Merge tag 'fixes-v5.11' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull misc fixes from Christian Brauner: "This contains several fixes which felt worth being combined into a single branch: - Use put_nsproxy() instead of open-coding it switch_task_namespaces() - Kirill's work to unify lifecycle management for all namespaces. The lifetime counters are used identically for all namespaces types. Namespaces may of course have additional unrelated counters and these are not altered. This work allows us to unify the type of the counters and reduces maintenance cost by moving the counter in one place and indicating that basic lifetime management is identical for all namespaces. - Peilin's fix adding three byte padding to Dmitry's PTRACE_GET_SYSCALL_INFO uapi struct to prevent an info leak. - Two smal patches to convert from the /* fall through */ comment annotation to the fallthrough keyword annotation which I had taken into my branch and into -next before df561f6688fe ("treewide: Use fallthrough pseudo-keyword") made it upstream which fixed this tree-wide. Since I didn't want to invalidate all testing for other commits I didn't rebase and kept them" * tag 'fixes-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: nsproxy: use put_nsproxy() in switch_task_namespaces() sys: Convert to the new fallthrough notation signal: Convert to the new fallthrough notation time: Use generic ns_common::count cgroup: Use generic ns_common::count mnt: Use generic ns_common::count user: Use generic ns_common::count pid: Use generic ns_common::count ipc: Use generic ns_common::count uts: Use generic ns_common::count net: Use generic ns_common::count ns: Add a common refcount into ns_common ptrace: Prevent kernel-infoleak in ptrace_get_syscall_info()
2020-11-25cgroup/cgroup.c: replace 'of->kn->priv' with of_cft()Hui Su
we have supplied the inline function: of_cft() in cgroup.h. So replace the direct use 'of->kn->priv' with inline func of_cft(), which is more readable. Signed-off-by: Hui Su <sh_def@163.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-11-25kernel: cgroup: Mundane spelling fixes throughout the fileBhaskar Chowdhury
Few spelling fixes throughout the file. Signed-off-by: Bhaskar Chowdhury <unixbhaskar@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-09-30cgroup: Zero sized write should be no-opJouni Roivas
Do not report failure on zero sized writes, and handle them as no-op. There's issues for example in case of writev() when there's iovec containing zero buffer as a first one. It's expected writev() on below example to successfully perform the write to specified writable cgroup file expecting integer value, and to return 2. For now it's returning value -1, and skipping the write: int writetest(int fd) { const char *buf1 = ""; const char *buf2 = "1\n"; struct iovec iov[2] = { { .iov_base = (void*)buf1, .iov_len = 0 }, { .iov_base = (void*)buf2, .iov_len = 2 } }; return writev(fd, iov, 2); } This patch fixes the issue by checking if there's nothing to write, and handling the write as no-op by just returning 0. Signed-off-by: Jouni Roivas <jouni.roivas@tuxera.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-09-30cgroup: remove redundant kernfs_activate in cgroup_setup_root()Wei Yang
This step is already done in rebind_subsystems(). Not necessary to do it again. Signed-off-by: Wei Yang <richard.weiyang@linux.alibaba.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-08-19cgroup: Use generic ns_common::countKirill Tkhai
Switch over cgroup namespaces to use the newly introduced common lifetime counter. Currently every namespace type has its own lifetime counter which is stored in the specific namespace struct. The lifetime counters are used identically for all namespaces types. Namespaces may of course have additional unrelated counters and these are not altered. This introduces a common lifetime counter into struct ns_common. The ns_common struct encompasses information that all namespaces share. That should include the lifetime counter since its common for all of them. It also allows us to unify the type of the counters across all namespaces. Most of them use refcount_t but one uses atomic_t and at least one uses kref. Especially the last one doesn't make much sense since it's just a wrapper around refcount_t since 2016 and actually complicates cleanup operations by having to use container_of() to cast the correct namespace struct out of struct ns_common. Having the lifetime counter for the namespaces in one place reduces maintenance cost. Not just because after switching all namespaces over we will have removed more code than we added but also because the logic is more easily understandable and we indicate to the user that the basic lifetime requirements for all namespaces are currently identical. Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Link: https://lore.kernel.org/r/159644980994.604812.383801057081594972.stgit@localhost.localdomain Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2020-07-07cgroup: fix cgroup_sk_alloc() for sk_clone_lock()Cong Wang
When we clone a socket in sk_clone_lock(), its sk_cgrp_data is copied, so the cgroup refcnt must be taken too. And, unlike the sk_alloc() path, sock_update_netprioidx() is not called here. Therefore, it is safe and necessary to grab the cgroup refcnt even when cgroup_sk_alloc is disabled. sk_clone_lock() is in BH context anyway, the in_interrupt() would terminate this function if called there. And for sk_alloc() skcd->val is always zero. So it's safe to factor out the code to make it more readable. The global variable 'cgroup_sk_alloc_disabled' is used to determine whether to take these reference counts. It is impossible to make the reference counting correct unless we save this bit of information in skcd->val. So, add a new bit there to record whether the socket has already taken the reference counts. This obviously relies on kmalloc() to align cgroup pointers to at least 4 bytes, ARCH_KMALLOC_MINALIGN is certainly larger than that. This bug seems to be introduced since the beginning, commit d979a39d7242 ("cgroup: duplicate cgroup reference when cloning sockets") tried to fix it but not compeletely. It seems not easy to trigger until the recent commit 090e28b229af ("netprio_cgroup: Fix unlimited memory leak of v2 cgroups") was merged. Fixes: bd1060a1d671 ("sock, cgroup: add sock->sk_cgroup") Reported-by: Cameron Berkenpas <cam@neo-zeon.de> Reported-by: Peter Geis <pgwipeout@gmail.com> Reported-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Reported-by: Daniël Sonck <dsonck92@gmail.com> Reported-by: Zhang Qiang <qiang.zhang@windriver.com> Tested-by: Cameron Berkenpas <cam@neo-zeon.de> Tested-by: Peter Geis <pgwipeout@gmail.com> Tested-by: Thomas Lamprecht <t.lamprecht@proxmox.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Zefan Li <lizefan@huawei.com> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-06Merge branch 'for-5.8' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "Just two patches: one to add system-level cpu.stat to the root cgroup for convenience and a trivial comment update" * 'for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: add cpu.stat file to root cgroup cgroup: Remove stale comments
2020-05-28cgroup: add cpu.stat file to root cgroupBoris Burkov
Currently, the root cgroup does not have a cpu.stat file. Add one which is consistent with /proc/stat to capture global cpu statistics that might not fall under cgroup accounting. We haven't done this in the past because the data are already presented in /proc/stat and we didn't want to add overhead from collecting root cgroup stats when cgroups are configured, but no cgroups have been created. By keeping the data consistent with /proc/stat, I think we avoid the first problem, while improving the usability of cgroups stats. We avoid the second problem by computing the contents of cpu.stat from existing data collected for /proc/stat anyway. Signed-off-by: Boris Burkov <boris@bur.io> Suggested-by: Tejun Heo <tj@kernel.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-05-26cgroup: Remove stale commentsZefan Li
- The default root is where we can create v2 cgroups. - The __DEVEL__sane_behavior mount option has been removed long long ago. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-04-28bpf: Refactor bpf_link update handlingAndrii Nakryiko
Make bpf_link update support more generic by making it into another bpf_link_ops methods. This allows generic syscall handling code to be agnostic to various conditionally compiled features (e.g., the case of CONFIG_CGROUP_BPF). This also allows to keep link type-specific code to remain static within respective code base. Refactor existing bpf_cgroup_link code and take advantage of this. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200429001614.1544-2-andriin@fb.com
2020-04-03Merge branch 'for-5.7' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: - Christian extended clone3 so that processes can be spawned into cgroups directly. This is not only neat in terms of semantics but also avoids grabbing the global cgroup_threadgroup_rwsem for migration. - Daniel added !root xattr support to cgroupfs. Userland already uses xattrs on cgroupfs for bookkeeping. This will allow delegated cgroups to support such usages. - Prateek tried to make cpuset hotplug handling synchronous but that led to possible deadlock scenarios. Reverted. - Other minor changes including release_agent_path handling cleanup. * 'for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: docs: cgroup-v1: Document the cpuset_v2_mode mount option Revert "cpuset: Make cpuset hotplug synchronous" cgroupfs: Support user xattrs kernfs: Add option to enable user xattrs kernfs: Add removed_size out param for simple_xattr_set kernfs: kvmalloc xattr value instead of kmalloc cgroup: Restructure release_agent_path handling selftests/cgroup: add tests for cloning into cgroups clone3: allow spawning processes into cgroups cgroup: add cgroup_may_write() helper cgroup: refactor fork helpers cgroup: add cgroup_get_from_file() helper cgroup: unify attach permission checking cpuset: Make cpuset hotplug synchronous cgroup.c: Use built-in RCU list checking kselftest/cgroup: add cgroup destruction test cgroup: Clean up css_set task traversal
2020-04-02mm: memcontrol: recursive memory.low protectionJohannes Weiner
Right now, the effective protection of any given cgroup is capped by its own explicit memory.low setting, regardless of what the parent says. The reasons for this are mostly historical and ease of implementation: to make delegation of memory.low safe, effective protection is the min() of all memory.low up the tree. Unfortunately, this limitation makes it impossible to protect an entire subtree from another without forcing the user to make explicit protection allocations all the way to the leaf cgroups - something that is highly undesirable in real life scenarios. Consider memory in a data center host. At the cgroup top level, we have a distinction between system management software and the actual workload the system is executing. Both branches are further subdivided into individual services, job components etc. We want to protect the workload as a whole from the system management software, but that doesn't mean we want to protect and prioritize individual workload wrt each other. Their memory demand can vary over time, and we'd want the VM to simply cache the hottest data within the workload subtree. Yet, the current memory.low limitations force us to allocate a fixed amount of protection to each workload component in order to get protection from system management software in general. This results in very inefficient resource distribution. Another concern with mandating downward allocation is that, as the complexity of the cgroup tree grows, it gets harder for the lower levels to be informed about decisions made at the host-level. Consider a container inside a namespace that in turn creates its own nested tree of cgroups to run multiple workloads. It'd be extremely difficult to configure memory.low parameters in those leaf cgroups that on one hand balance pressure among siblings as the container desires, while also reflecting the host-level protection from e.g. rpm upgrades, that lie beyond one or more delegation and namespacing points in the tree. It's highly unusual from a cgroup interface POV that nested levels have to be aware of and reflect decisions made at higher levels for them to be effective. To enable such use cases and scale configurability for complex trees, this patch implements a resource inheritance model for memory that is similar to how the CPU and the IO controller implement work-conserving resource allocations: a share of a resource allocated to a subree always applies to the entire subtree recursively, while allowing, but not mandating, children to further specify distribution rules. That means that if protection is explicitly allocated among siblings, those configured shares are being followed during page reclaim just like they are now. However, if the memory.low set at a higher level is not fully claimed by the children in that subtree, the "floating" remainder is applied to each cgroup in the tree in proportion to its size. Since reclaim pressure is applied in proportion to size as well, each child in that tree gets the same boost, and the effect is neutral among siblings - with respect to each other, they behave as if no memory control was enabled at all, and the VM simply balances the memory demands optimally within the subtree. But collectively those cgroups enjoy a boost over the cgroups in neighboring trees. E.g. a leaf cgroup with a memory.low setting of 0 no longer means that it's not getting a share of the hierarchically assigned resource, just that it doesn't claim a fixed amount of it to protect from its siblings. This allows us to recursively protect one subtree (workload) from another (system management), while letting subgroups compete freely among each other - without having to assign fixed shares to each leaf, and without nested groups having to echo higher-level settings. The floating protection composes naturally with fixed protection. Consider the following example tree: A A: low = 2G / \ A1: low = 1G A1 A2 A2: low = 0G As outside pressure is applied to this tree, A1 will enjoy a fixed protection from A2 of 1G, but the remaining, unclaimed 1G from A is split evenly among A1 and A2, coming out to 1.5G and 0.5G. There is a slight risk of regressing theoretical setups where the top-level cgroups don't know about the true budgeting and set bogusly high "bypass" values that are meaningfully allocated down the tree. Such setups would rely on unclaimed protection to be discarded, and distributing it would change the intended behavior. Be safe and hide the new behavior behind a mount option, 'memory_recursiveprot'. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Koutný <mkoutny@suse.com> Link: http://lkml.kernel.org/r/20200227195606.46212-4-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-30bpf: Implement bpf_prog replacement for an active bpf_cgroup_linkAndrii Nakryiko
Add new operation (LINK_UPDATE), which allows to replace active bpf_prog from under given bpf_link. Currently this is only supported for bpf_cgroup_link, but will be extended to other kinds of bpf_links in follow-up patches. For bpf_cgroup_link, implemented functionality matches existing semantics for direct bpf_prog attachment (including BPF_F_REPLACE flag). User can either unconditionally set new bpf_prog regardless of which bpf_prog is currently active under given bpf_link, or, optionally, can specify expected active bpf_prog. If active bpf_prog doesn't match expected one, no changes are performed, old bpf_link stays intact and attached, operation returns a failure. cgroup_bpf_replace() operation is resolving race between auto-detachment and bpf_prog update in the same fashion as it's done for bpf_link detachment, except in this case update has no way of succeeding because of target cgroup marked as dying. So in this case error is returned. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200330030001.2312810-3-andriin@fb.com
2020-03-30bpf: Implement bpf_link-based cgroup BPF program attachmentAndrii Nakryiko
Implement new sub-command to attach cgroup BPF programs and return FD-based bpf_link back on success. bpf_link, once attached to cgroup, cannot be replaced, except by owner having its FD. Cgroup bpf_link supports only BPF_F_ALLOW_MULTI semantics. Both link-based and prog-based BPF_F_ALLOW_MULTI attachments can be freely intermixed. To prevent bpf_cgroup_link from keeping cgroup alive past the point when no BPF program can be executed, implement auto-detachment of link. When cgroup_bpf_release() is called, all attached bpf_links are forced to release cgroup refcounts, but they leave bpf_link otherwise active and allocated, as well as still owning underlying bpf_prog. This is because user-space might still have FDs open and active, so bpf_link as a user-referenced object can't be freed yet. Once last active FD is closed, bpf_link will be freed and underlying bpf_prog refcount will be dropped. But cgroup refcount won't be touched, because cgroup is released already. The inherent race between bpf_cgroup_link release (from closing last FD) and cgroup_bpf_release() is resolved by both operations taking cgroup_mutex. So the only additional check required is when bpf_cgroup_link attempts to detach itself from cgroup. At that time we need to check whether there is still cgroup associated with that link. And if not, exit with success, because bpf_cgroup_link was already successfully detached. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Link: https://lore.kernel.org/bpf/20200330030001.2312810-2-andriin@fb.com
2020-03-16cgroupfs: Support user xattrsDaniel Xu
This patch turns on xattr support for cgroupfs. This is useful for letting non-root owners of delegated subtrees attach metadata to cgroups. One use case is for subtree owners to tell a userspace out of memory killer to bias away from killing specific subtrees. Tests: [/sys/fs/cgroup]# for i in $(seq 0 130); \ do setfattr workload.slice -n user.name$i -v wow; done setfattr: workload.slice: No space left on device setfattr: workload.slice: No space left on device setfattr: workload.slice: No space left on device [/sys/fs/cgroup]# for i in $(seq 0 130); \ do setfattr workload.slice --remove user.name$i; done setfattr: workload.slice: No such attribute setfattr: workload.slice: No such attribute setfattr: workload.slice: No such attribute [/sys/fs/cgroup]# for i in $(seq 0 130); \ do setfattr workload.slice -n user.name$i -v wow; done setfattr: workload.slice: No space left on device setfattr: workload.slice: No space left on device setfattr: workload.slice: No space left on device `seq 0 130` is inclusive, and 131 - 128 = 3, which is the number of errors we expect to see. [/data]# cat testxattr.c #include <sys/types.h> #include <sys/xattr.h> #include <stdio.h> #include <stdlib.h> int main() { char name[256]; char *buf = malloc(64 << 10); if (!buf) { perror("malloc"); return 1; } for (int i = 0; i < 4; ++i) { snprintf(name, 256, "user.bigone%d", i); if (setxattr("/sys/fs/cgroup/system.slice", name, buf, 64 << 10, 0)) { printf("setxattr failed on iteration=%d\n", i); return 1; } } return 0; } [/data]# ./a.out setxattr failed on iteration=2 [/data]# ./a.out setxattr failed on iteration=0 [/sys/fs/cgroup]# setfattr -x user.bigone0 system.slice/ [/sys/fs/cgroup]# setfattr -x user.bigone1 system.slice/ [/data]# ./a.out setxattr failed on iteration=2 Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Acked-by: Chris Down <chris@chrisdown.name> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-03-12Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netLinus Torvalds
Pull networking fixes from David Miller: "It looks like a decent sized set of fixes, but a lot of these are one liner off-by-one and similar type changes: 1) Fix netlink header pointer to calcular bad attribute offset reported to user. From Pablo Neira Ayuso. 2) Don't double clear PHY interrupts when ->did_interrupt is set, from Heiner Kallweit. 3) Add missing validation of various (devlink, nl802154, fib, etc.) attributes, from Jakub Kicinski. 4) Missing *pos increments in various netfilter seq_next ops, from Vasily Averin. 5) Missing break in of_mdiobus_register() loop, from Dajun Jin. 6) Don't double bump tx_dropped in veth driver, from Jiang Lidong. 7) Work around FMAN erratum A050385, from Madalin Bucur. 8) Make sure ARP header is pulled early enough in bonding driver, from Eric Dumazet. 9) Do a cond_resched() during multicast processing of ipvlan and macvlan, from Mahesh Bandewar. 10) Don't attach cgroups to unrelated sockets when in interrupt context, from Shakeel Butt. 11) Fix tpacket ring state management when encountering unknown GSO types. From Willem de Bruijn. 12) Fix MDIO bus PHY resume by checking mdio_bus_phy_may_suspend() only in the suspend context. From Heiner Kallweit" * git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (112 commits) net: systemport: fix index check to avoid an array out of bounds access tc-testing: add ETS scheduler to tdc build configuration net: phy: fix MDIO bus PM PHY resuming net: hns3: clear port base VLAN when unload PF net: hns3: fix RMW issue for VLAN filter switch net: hns3: fix VF VLAN table entries inconsistent issue net: hns3: fix "tc qdisc del" failed issue taprio: Fix sending packets without dequeueing them net: mvmdio: avoid error message for optional IRQ net: dsa: mv88e6xxx: Add missing mask of ATU occupancy register net: memcg: fix lockdep splat in inet_csk_accept() s390/qeth: implement smarter resizing of the RX buffer pool s390/qeth: refactor buffer pool code s390/qeth: use page pointers to manage RX buffer pool seg6: fix SRv6 L2 tunnels to use IANA-assigned protocol number net: dsa: Don't instantiate phylink for CPU/DSA ports unless needed net/packet: tpacket_rcv: do not increment ring index on drop sxgbe: Fix off by one in samsung driver strncpy size arg net: caif: Add lockdep expression to RCU traversal primitive MAINTAINERS: remove Sathya Perla as Emulex NIC maintainer ...
2020-03-12Merge branch 'for-5.6-fixes' into for-5.7Tejun Heo
2020-03-10cgroup: memcg: net: do not associate sock with unrelated cgroupShakeel Butt
We are testing network memory accounting in our setup and noticed inconsistent network memory usage and often unrelated cgroups network usage correlates with testing workload. On further inspection, it seems like mem_cgroup_sk_alloc() and cgroup_sk_alloc() are broken in irq context specially for cgroup v1. mem_cgroup_sk_alloc() and cgroup_sk_alloc() can be called in irq context and kind of assumes that this can only happen from sk_clone_lock() and the source sock object has already associated cgroup. However in cgroup v1, where network memory accounting is opt-in, the source sock can be unassociated with any cgroup and the new cloned sock can get associated with unrelated interrupted cgroup. Cgroup v2 can also suffer if the source sock object was created by process in the root cgroup or if sk_alloc() is called in irq context. The fix is to just do nothing in interrupt. WARNING: Please note that about half of the TCP sockets are allocated from the IRQ context, so, memory used by such sockets will not be accouted by the memcg. The stack trace of mem_cgroup_sk_alloc() from IRQ-context: CPU: 70 PID: 12720 Comm: ssh Tainted: 5.6.0-smp-DEV #1 Hardware name: ... Call Trace: <IRQ> dump_stack+0x57/0x75 mem_cgroup_sk_alloc+0xe9/0xf0 sk_clone_lock+0x2a7/0x420 inet_csk_clone_lock+0x1b/0x110 tcp_create_openreq_child+0x23/0x3b0 tcp_v6_syn_recv_sock+0x88/0x730 tcp_check_req+0x429/0x560 tcp_v6_rcv+0x72d/0xa40 ip6_protocol_deliver_rcu+0xc9/0x400 ip6_input+0x44/0xd0 ? ip6_protocol_deliver_rcu+0x400/0x400 ip6_rcv_finish+0x71/0x80 ipv6_rcv+0x5b/0xe0 ? ip6_sublist_rcv+0x2e0/0x2e0 process_backlog+0x108/0x1e0 net_rx_action+0x26b/0x460 __do_softirq+0x104/0x2a6 do_softirq_own_stack+0x2a/0x40 </IRQ> do_softirq.part.19+0x40/0x50 __local_bh_enable_ip+0x51/0x60 ip6_finish_output2+0x23d/0x520 ? ip6table_mangle_hook+0x55/0x160 __ip6_finish_output+0xa1/0x100 ip6_finish_output+0x30/0xd0 ip6_output+0x73/0x120 ? __ip6_finish_output+0x100/0x100 ip6_xmit+0x2e3/0x600 ? ipv6_anycast_cleanup+0x50/0x50 ? inet6_csk_route_socket+0x136/0x1e0 ? skb_free_head+0x1e/0x30 inet6_csk_xmit+0x95/0xf0 __tcp_transmit_skb+0x5b4/0xb20 __tcp_send_ack.part.60+0xa3/0x110 tcp_send_ack+0x1d/0x20 tcp_rcv_state_process+0xe64/0xe80 ? tcp_v6_connect+0x5d1/0x5f0 tcp_v6_do_rcv+0x1b1/0x3f0 ? tcp_v6_do_rcv+0x1b1/0x3f0 __release_sock+0x7f/0xd0 release_sock+0x30/0xa0 __inet_stream_connect+0x1c3/0x3b0 ? prepare_to_wait+0xb0/0xb0 inet_stream_connect+0x3b/0x60 __sys_connect+0x101/0x120 ? __sys_getsockopt+0x11b/0x140 __x64_sys_connect+0x1a/0x20 do_syscall_64+0x51/0x200 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The stack trace of mem_cgroup_sk_alloc() from IRQ-context: Fixes: 2d7580738345 ("mm: memcontrol: consolidate cgroup socket tracking") Fixes: d979a39d7242 ("cgroup: duplicate cgroup reference when cloning sockets") Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-04cgroup: fix psi_show() crash on 32bit ino archsQian Cai
Similar to the commit d7495343228f ("cgroup: fix incorrect WARN_ON_ONCE() in cgroup_setup_root()"), cgroup_id(root_cgrp) does not equal to 1 on 32bit ino archs which triggers all sorts of issues with psi_show() on s390x. For example, BUG: KASAN: slab-out-of-bounds in collect_percpu_times+0x2d0/ Read of size 4 at addr 000000001e0ce000 by task read_all/3667 collect_percpu_times+0x2d0/0x798 psi_show+0x7c/0x2a8 seq_read+0x2ac/0x830 vfs_read+0x92/0x150 ksys_read+0xe2/0x188 system_call+0xd8/0x2b4 Fix it by using cgroup_ino(). Fixes: 743210386c03 ("cgroup: use cgrp->kn->id as the cgroup ID") Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Tejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org # v5.5
2020-02-12clone3: allow spawning processes into cgroupsChristian Brauner
This adds support for creating a process in a different cgroup than its parent. Callers can limit and account processes and threads right from the moment they are spawned: - A service manager can directly spawn new services into dedicated cgroups. - A process can be directly created in a frozen cgroup and will be frozen as well. - The initial accounting jitter experienced by process supervisors and daemons is eliminated with this. - Threaded applications or even thread implementations can choose to create a specific cgroup layout where each thread is spawned directly into a dedicated cgroup. This feature is limited to the unified hierarchy. Callers need to pass a directory file descriptor for the target cgroup. The caller can choose to pass an O_PATH file descriptor. All usual migration restrictions apply, i.e. there can be no processes in inner nodes. In general, creating a process directly in a target cgroup adheres to all migration restrictions. One of the biggest advantages of this feature is that CLONE_INTO_GROUP does not need to grab the write side of the cgroup cgroup_threadgroup_rwsem. This global lock makes moving tasks/threads around super expensive. With clone3() this lock is avoided. Cc: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: cgroups@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-02-12cgroup: add cgroup_may_write() helperChristian Brauner
Add a cgroup_may_write() helper which we can use in the CLONE_INTO_CGROUP patch series to verify that we can write to the destination cgroup. Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Li Zefan <lizefan@huawei.com> Cc: cgroups@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-02-12cgroup: refactor fork helpersChristian Brauner
This refactors the fork helpers so they can be easily modified in the next patches. The patch just moves the cgroup threadgroup rwsem grab and release into the helpers. They don't need to be directly exposed in fork.c. Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Li Zefan <lizefan@huawei.com> Cc: cgroups@vger.kernel.org Acked-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-02-12cgroup: add cgroup_get_from_file() helperChristian Brauner
Add a helper cgroup_get_from_file(). The helper will be used in subsequent patches to retrieve a cgroup while holding a reference to the struct file it was taken from. Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Li Zefan <lizefan@huawei.com> Cc: cgroups@vger.kernel.org Acked-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-02-12cgroup: unify attach permission checkingChristian Brauner
The core codepaths to check whether a process can be attached to a cgroup are the same for threads and thread-group leaders. Only a small piece of code verifying that source and destination cgroup are in the same domain differentiates the thread permission checking from thread-group leader permission checking. Since cgroup_migrate_vet_dst() only matters cgroup2 - it is a noop on cgroup1 - we can move it out of cgroup_attach_task(). All checks can now be consolidated into a new helper cgroup_attach_permissions() callable from both cgroup_procs_write() and cgroup_threads_write(). Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: cgroups@vger.kernel.org Acked-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-02-12cgroup.c: Use built-in RCU list checkingMadhuparna Bhowmik
list_for_each_entry_rcu has built-in RCU and lock checking. Pass cond argument to list_for_each_entry_rcu() to silence false lockdep warning when CONFIG_PROVE_RCU_LIST is enabled by default. Even though the function css_next_child() already checks if cgroup_mutex or rcu_read_lock() is held using cgroup_assert_mutex_or_rcu_locked(), there is a need to pass cond to list_for_each_entry_rcu() to avoid false positive lockdep warning. Signed-off-by: Madhuparna Bhowmik <madhuparnabhowmik10@gmail.com> Acked-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-02-12cgroup: Clean up css_set task traversalMichal Koutný
css_task_iter stores pointer to head of each iterable list, this dates back to commit 0f0a2b4fa621 ("cgroup: reorganize css_task_iter") when we did not store cur_cset. Let us utilize list heads directly in cur_cset and streamline css_task_iter_advance_css_set a bit. This is no intentional function change. Signed-off-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-02-12cgroup: Iterate tasks that did not finish do_exit()Michal Koutný
PF_EXITING is set earlier than actual removal from css_set when a task is exitting. This can confuse cgroup.procs readers who see no PF_EXITING tasks, however, rmdir is checking against css_set membership so it can transitionally fail with EBUSY. Fix this by listing tasks that weren't unlinked from css_set active lists. It may happen that other users of the task iterator (without CSS_TASK_ITER_PROCS) spot a PF_EXITING task before cgroup_exit(). This is equal to the state before commit c03cd7738a83 ("cgroup: Include dying leaders with live threads in PROCS iterations") but it may be reviewed later. Reported-by: Suren Baghdasaryan <surenb@google.com> Fixes: c03cd7738a83 ("cgroup: Include dying leaders with live threads in PROCS iterations") Signed-off-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-02-12cgroup: cgroup_procs_next should increase position indexVasily Averin
If seq_file .next fuction does not change position index, read after some lseek can generate unexpected output: 1) dd bs=1 skip output of each 2nd elements $ dd if=/sys/fs/cgroup/cgroup.procs bs=8 count=1 2 3 4 5 1+0 records in 1+0 records out 8 bytes copied, 0,000267297 s, 29,9 kB/s [test@localhost ~]$ dd if=/sys/fs/cgroup/cgroup.procs bs=1 count=8 2 4 <<< NB! 3 was skipped 6 <<< ... and 5 too 8 <<< ... and 7 8+0 records in 8+0 records out 8 bytes copied, 5,2123e-05 s, 153 kB/s This happen because __cgroup_procs_start() makes an extra extra cgroup_procs_next() call 2) read after lseek beyond end of file generates whole last line. 3) read after lseek into middle of last line generates expected rest of last line and unexpected whole line once again. Additionally patch removes an extra position index changes in __cgroup_procs_start() Cc: stable@vger.kernel.org https://bugzilla.kernel.org/show_bug.cgi?id=206283 Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-02-10Merge branch 'for-5.6-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup fix from Tejun Heo: "I made a mistake while removing cgroup task list lazy init optimization making the root cgroup.procs show entries for the init_tasks. The zero entries doesn't cause critical failures but does make systemd print out warning messages during boot. Fix it by omitting init_tasks as they should be" * 'for-5.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: init_tasks shouldn't be linked to the root cgroup
2020-02-08Merge branch 'merge.nfs-fs_parse.1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs file system parameter updates from Al Viro: "Saner fs_parser.c guts and data structures. The system-wide registry of syntax types (string/enum/int32/oct32/.../etc.) is gone and so is the horror switch() in fs_parse() that would have to grow another case every time something got added to that system-wide registry. New syntax types can be added by filesystems easily now, and their namespace is that of functions - not of system-wide enum members. IOW, they can be shared or kept private and if some turn out to be widely useful, we can make them common library helpers, etc., without having to do anything whatsoever to fs_parse() itself. And we already get that kind of requests - the thing that finally pushed me into doing that was "oh, and let's add one for timeouts - things like 15s or 2h". If some filesystem really wants that, let them do it. Without somebody having to play gatekeeper for the variants blessed by direct support in fs_parse(), TYVM. Quite a bit of boilerplate is gone. And IMO the data structures make a lot more sense now. -200LoC, while we are at it" * 'merge.nfs-fs_parse.1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (25 commits) tmpfs: switch to use of invalfc() cgroup1: switch to use of errorfc() et.al. procfs: switch to use of invalfc() hugetlbfs: switch to use of invalfc() cramfs: switch to use of errofc() et.al. gfs2: switch to use of errorfc() et.al. fuse: switch to use errorfc() et.al. ceph: use errorfc() and friends instead of spelling the prefix out prefix-handling analogues of errorf() and friends turn fs_param_is_... into functions fs_parse: handle optional arguments sanely fs_parse: fold fs_parameter_desc/fs_parameter_spec fs_parser: remove fs_parameter_description name field add prefix to fs_context->log ceph_parse_param(), ceph_parse_mon_ips(): switch to passing fc_log new primitive: __fs_parse() switch rbd and libceph to p_log-based primitives struct p_log, variants of warnf() et.al. taking that one instead teach logfc() to handle prefices, give it saner calling conventions get rid of cg_invalf() ...
2020-02-07fs_parse: fold fs_parameter_desc/fs_parameter_specAl Viro
The former contains nothing but a pointer to an array of the latter... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07fs_parser: remove fs_parameter_description name fieldEric Sandeen
Unused now. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-01-30cgroup: init_tasks shouldn't be linked to the root cgroupTejun Heo
5153faac18d2 ("cgroup: remove cgroup_enable_task_cg_lists() optimization") removed lazy initialization of css_sets so that new tasks are always lniked to its css_set. In the process, it incorrectly ended up adding init_tasks to root css_set. They show up as PID 0's in root's cgroup.procs triggering warnings in systemd and generally confusing people. Fix it by skip css_set linking for init_tasks. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: https://github.com/joanbm Link: https://github.com/systemd/systemd/issues/14682 Fixes: 5153faac18d2 ("cgroup: remove cgroup_enable_task_cg_lists() optimization") Cc: stable@vger.kernel.org # v5.5+
2020-01-28Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextLinus Torvalds
Pull networking updates from David Miller: 1) Add WireGuard 2) Add HE and TWT support to ath11k driver, from John Crispin. 3) Add ESP in TCP encapsulation support, from Sabrina Dubroca. 4) Add variable window congestion control to TIPC, from Jon Maloy. 5) Add BCM84881 PHY driver, from Russell King. 6) Start adding netlink support for ethtool operations, from Michal Kubecek. 7) Add XDP drop and TX action support to ena driver, from Sameeh Jubran. 8) Add new ipv4 route notifications so that mlxsw driver does not have to handle identical routes itself. From Ido Schimmel. 9) Add BPF dynamic program extensions, from Alexei Starovoitov. 10) Support RX and TX timestamping in igc, from Vinicius Costa Gomes. 11) Add support for macsec HW offloading, from Antoine Tenart. 12) Add initial support for MPTCP protocol, from Christoph Paasch, Matthieu Baerts, Florian Westphal, Peter Krystad, and many others. 13) Add Octeontx2 PF support, from Sunil Goutham, Geetha sowjanya, Linu Cherian, and others. * git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1469 commits) net: phy: add default ARCH_BCM_IPROC for MDIO_BCM_IPROC udp: segment looped gso packets correctly netem: change mailing list qed: FW 8.42.2.0 debug features qed: rt init valid initialization changed qed: Debug feature: ilt and mdump qed: FW 8.42.2.0 Add fw overlay feature qed: FW 8.42.2.0 HSI changes qed: FW 8.42.2.0 iscsi/fcoe changes qed: Add abstraction for different hsi values per chip qed: FW 8.42.2.0 Additional ll2 type qed: Use dmae to write to widebus registers in fw_funcs qed: FW 8.42.2.0 Parser offsets modified qed: FW 8.42.2.0 Queue Manager changes qed: FW 8.42.2.0 Expose new registers and change windows qed: FW 8.42.2.0 Internal ram offsets modifications MAINTAINERS: Add entry for Marvell OcteonTX2 Physical Function driver Documentation: net: octeontx2: Add RVU HW and drivers overview octeontx2-pf: ethtool RSS config support octeontx2-pf: Add basic ethtool support ...
2020-01-15cgroup: Prevent double killing of css when enabling threaded cgroupMichal Koutný
The test_cgcore_no_internal_process_constraint_on_threads selftest when running with subsystem controlling noise triggers two warnings: > [ 597.443115] WARNING: CPU: 1 PID: 28167 at kernel/cgroup/cgroup.c:3131 cgroup_apply_control_enable+0xe0/0x3f0 > [ 597.443413] WARNING: CPU: 1 PID: 28167 at kernel/cgroup/cgroup.c:3177 cgroup_apply_control_disable+0xa6/0x160 Both stem from a call to cgroup_type_write. The first warning was also triggered by syzkaller. When we're switching cgroup to threaded mode shortly after a subsystem was disabled on it, we can see the respective subsystem css dying there. The warning in cgroup_apply_control_enable is harmless in this case since we're not adding new subsys anyway. The warning in cgroup_apply_control_disable indicates an attempt to kill css of recently disabled subsystem repeatedly. The commit prevents these situations by making cgroup_type_write wait for all dying csses to go away before re-applying subtree controls. When at it, the locations of WARN_ON_ONCE calls are moved so that warning is triggered only when we are about to misuse the dying css. Reported-by: syzbot+5493b2a54d31d6aea629@syzkaller.appspotmail.com Reported-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2019-12-19bpf: Support replacing cgroup-bpf program in MULTI modeAndrey Ignatov
The common use-case in production is to have multiple cgroup-bpf programs per attach type that cover multiple use-cases. Such programs are attached with BPF_F_ALLOW_MULTI and can be maintained by different people. Order of programs usually matters, for example imagine two egress programs: the first one drops packets and the second one counts packets. If they're swapped the result of counting program will be different. It brings operational challenges with updating cgroup-bpf program(s) attached with BPF_F_ALLOW_MULTI since there is no way to replace a program: * One way to update is to detach all programs first and then attach the new version(s) again in the right order. This introduces an interruption in the work a program is doing and may not be acceptable (e.g. if it's egress firewall); * Another way is attach the new version of a program first and only then detach the old version. This introduces the time interval when two versions of same program are working, what may not be acceptable if a program is not idempotent. It also imposes additional burden on program developers to make sure that two versions of their program can co-exist. Solve the problem by introducing a "replace" mode in BPF_PROG_ATTACH command for cgroup-bpf programs being attached with BPF_F_ALLOW_MULTI flag. This mode is enabled by newly introduced BPF_F_REPLACE attach flag and bpf_attr.replace_bpf_fd attribute to pass fd of the old program to replace That way user can replace any program among those attached with BPF_F_ALLOW_MULTI flag without the problems described above. Details of the new API: * If BPF_F_REPLACE is set but replace_bpf_fd doesn't have valid descriptor of BPF program, BPF_PROG_ATTACH will return corresponding error (EINVAL or EBADF). * If replace_bpf_fd has valid descriptor of BPF program but such a program is not attached to specified cgroup, BPF_PROG_ATTACH will return ENOENT. BPF_F_REPLACE is introduced to make the user intent clear, since replace_bpf_fd alone can't be used for this (its default value, 0, is a valid fd). BPF_F_REPLACE also makes it possible to extend the API in the future (e.g. add BPF_F_BEFORE and BPF_F_AFTER if needed). Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Narkyiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/30cd850044a0057bdfcaaf154b7d2f39850ba813.1576741281.git.rdna@fb.com
2019-11-25Merge branch 'for-5.5' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "There are several notable changes here: - Single thread migrating itself has been optimized so that it doesn't need threadgroup rwsem anymore. - Freezer optimization to avoid unnecessary frozen state changes. - cgroup ID unification so that cgroup fs ino is the only unique ID used for the cgroup and can be used to directly look up live cgroups through filehandle interface on 64bit ino archs. On 32bit archs, cgroup fs ino is still the only ID in use but it is only unique when combined with gen. - selftest and other changes" * 'for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (24 commits) writeback: fix -Wformat compilation warnings docs: cgroup: mm: Fix spelling of "list" cgroup: fix incorrect WARN_ON_ONCE() in cgroup_setup_root() cgroup: use cgrp->kn->id as the cgroup ID kernfs: use 64bit inos if ino_t is 64bit kernfs: implement custom exportfs ops and fid type kernfs: combine ino/id lookup functions into kernfs_find_and_get_node_by_id() kernfs: convert kernfs_node->id from union kernfs_node_id to u64 kernfs: kernfs_find_and_get_node_by_ino() should only look up activated nodes kernfs: use dumber locking for kernfs_find_and_get_node_by_ino() netprio: use css ID instead of cgroup ID writeback: use ino_t for inodes in tracepoints kernfs: fix ino wrap-around detection kselftests: cgroup: Avoid the reuse of fd after it is deallocated cgroup: freezer: don't change task and cgroups status unnecessarily cgroup: use cgroup->last_bstat instead of cgroup->bstat_pending for consistency cgroup: remove cgroup_enable_task_cg_lists() optimization cgroup: pids: use atomic64_t for pids->limit selftests: cgroup: Run test_core under interfering stress selftests: cgroup: Add task migration tests ...
2019-11-14cgroup: fix incorrect WARN_ON_ONCE() in cgroup_setup_root()Tejun Heo
743210386c03 ("cgroup: use cgrp->kn->id as the cgroup ID") added WARN which triggers if cgroup_id(root_cgrp) is not 1. This is fine on 64bit ino archs but on 32bit archs cgroup ID is ((gen << 32) | ino) and gen starts at 1, so the root id is 0x1_0000_0001 instead of 1 always triggering the WARN. What we wanna make sure is that the ino part is 1. Fix it. Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Fixes: 743210386c03 ("cgroup: use cgrp->kn->id as the cgroup ID") Signed-off-by: Tejun Heo <tj@kernel.org>
2019-11-12cgroup: use cgrp->kn->id as the cgroup IDTejun Heo
cgroup ID is currently allocated using a dedicated per-hierarchy idr and used internally and exposed through tracepoints and bpf. This is confusing because there are tracepoints and other interfaces which use the cgroupfs ino as IDs. The preceding changes made kn->id exposed as ino as 64bit ino on supported archs or ino+gen (low 32bits as ino, high gen). There's no reason for cgroup to use different IDs. The kernfs IDs are unique and userland can easily discover them and map them back to paths using standard file operations. This patch replaces cgroup IDs with kernfs IDs. * cgroup_id() is added and all cgroup ID users are converted to use it. * kernfs_node creation is moved to earlier during cgroup init so that cgroup_id() is available during init. * While at it, s/cgroup/cgrp/ in psi helpers for consistency. * Fallback ID value is changed to 1 to be consistent with root cgroup ID. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Namhyung Kim <namhyung@kernel.org>
2019-11-12kernfs: combine ino/id lookup functions into kernfs_find_and_get_node_by_id()Tejun Heo
kernfs_find_and_get_node_by_ino() looks the kernfs_node matching the specified ino. On top of that, kernfs_get_node_by_id() and kernfs_fh_get_inode() implement full ID matching by testing the rest of ID. On surface, confusingly, the two are slightly different in that the latter uses 0 gen as wildcard while the former doesn't - does it mean that the latter can't uniquely identify inodes w/ 0 gen? In practice, this is a distinction without a difference because generation number starts at 1. There are no actual IDs with 0 gen, so it can always safely used as wildcard. Let's simplify the code by renaming kernfs_find_and_get_node_by_ino() to kernfs_find_and_get_node_by_id(), moving all lookup logics into it, and removing now unnecessary kernfs_get_node_by_id(). Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12kernfs: convert kernfs_node->id from union kernfs_node_id to u64Tejun Heo
kernfs_node->id is currently a union kernfs_node_id which represents either a 32bit (ino, gen) pair or u64 value. I can't see much value in the usage of the union - all that's needed is a 64bit ID which the current code is already limited to. Using a union makes the code unnecessarily complicated and prevents using 64bit ino without adding practical benefits. This patch drops union kernfs_node_id and makes kernfs_node->id a u64. ino is stored in the lower 32bits and gen upper. Accessors - kernfs[_id]_ino() and kernfs[_id]_gen() - are added to retrieve the ino and gen. This simplifies ID handling less cumbersome and will allow using 64bit inos on supported archs. This patch doesn't make any functional changes. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Alexei Starovoitov <ast@kernel.org>