// SPDX-License-Identifier: GPL-2.0-or-later /* * Cryptographic API. * * Glue code for the SHA1 Secure Hash Algorithm assembler implementations * using SSSE3, AVX, AVX2, and SHA-NI instructions. * * This file is based on sha1_generic.c * * Copyright (c) Alan Smithee. * Copyright (c) Andrew McDonald * Copyright (c) Jean-Francois Dive * Copyright (c) Mathias Krause * Copyright (c) Chandramouli Narayanan */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include static const struct x86_cpu_id module_cpu_ids[] = { X86_MATCH_FEATURE(X86_FEATURE_SHA_NI, NULL), X86_MATCH_FEATURE(X86_FEATURE_AVX2, NULL), X86_MATCH_FEATURE(X86_FEATURE_AVX, NULL), X86_MATCH_FEATURE(X86_FEATURE_SSSE3, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, module_cpu_ids); static inline int sha1_update(struct shash_desc *desc, const u8 *data, unsigned int len, sha1_block_fn *sha1_xform) { int remain; /* * Make sure struct sha1_state begins directly with the SHA1 * 160-bit internal state, as this is what the asm functions expect. */ BUILD_BUG_ON(offsetof(struct sha1_state, state) != 0); kernel_fpu_begin(); remain = sha1_base_do_update_blocks(desc, data, len, sha1_xform); kernel_fpu_end(); return remain; } static inline int sha1_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out, sha1_block_fn *sha1_xform) { kernel_fpu_begin(); sha1_base_do_finup(desc, data, len, sha1_xform); kernel_fpu_end(); return sha1_base_finish(desc, out); } asmlinkage void sha1_transform_ssse3(struct sha1_state *state, const u8 *data, int blocks); static int sha1_ssse3_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, sha1_transform_ssse3); } static int sha1_ssse3_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, sha1_transform_ssse3); } static struct shash_alg sha1_ssse3_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_ssse3_update, .finup = sha1_ssse3_finup, .descsize = SHA1_STATE_SIZE, .base = { .cra_name = "sha1", .cra_driver_name = "sha1-ssse3", .cra_priority = 150, .cra_flags = CRYPTO_AHASH_ALG_BLOCK_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int register_sha1_ssse3(void) { if (boot_cpu_has(X86_FEATURE_SSSE3)) return crypto_register_shash(&sha1_ssse3_alg); return 0; } static void unregister_sha1_ssse3(void) { if (boot_cpu_has(X86_FEATURE_SSSE3)) crypto_unregister_shash(&sha1_ssse3_alg); } asmlinkage void sha1_transform_avx(struct sha1_state *state, const u8 *data, int blocks); static int sha1_avx_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, sha1_transform_avx); } static int sha1_avx_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, sha1_transform_avx); } static struct shash_alg sha1_avx_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_avx_update, .finup = sha1_avx_finup, .descsize = SHA1_STATE_SIZE, .base = { .cra_name = "sha1", .cra_driver_name = "sha1-avx", .cra_priority = 160, .cra_flags = CRYPTO_AHASH_ALG_BLOCK_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static bool avx_usable(void) { if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) { if (boot_cpu_has(X86_FEATURE_AVX)) pr_info("AVX detected but unusable.\n"); return false; } return true; } static int register_sha1_avx(void) { if (avx_usable()) return crypto_register_shash(&sha1_avx_alg); return 0; } static void unregister_sha1_avx(void) { if (avx_usable()) crypto_unregister_shash(&sha1_avx_alg); } #define SHA1_AVX2_BLOCK_OPTSIZE 4 /* optimal 4*64 bytes of SHA1 blocks */ asmlinkage void sha1_transform_avx2(struct sha1_state *state, const u8 *data, int blocks); static bool avx2_usable(void) { if (avx_usable() && boot_cpu_has(X86_FEATURE_AVX2) && boot_cpu_has(X86_FEATURE_BMI1) && boot_cpu_has(X86_FEATURE_BMI2)) return true; return false; } static inline void sha1_apply_transform_avx2(struct sha1_state *state, const u8 *data, int blocks) { /* Select the optimal transform based on data block size */ if (blocks >= SHA1_AVX2_BLOCK_OPTSIZE) sha1_transform_avx2(state, data, blocks); else sha1_transform_avx(state, data, blocks); } static int sha1_avx2_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, sha1_apply_transform_avx2); } static int sha1_avx2_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, sha1_apply_transform_avx2); } static struct shash_alg sha1_avx2_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_avx2_update, .finup = sha1_avx2_finup, .descsize = SHA1_STATE_SIZE, .base = { .cra_name = "sha1", .cra_driver_name = "sha1-avx2", .cra_priority = 170, .cra_flags = CRYPTO_AHASH_ALG_BLOCK_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int register_sha1_avx2(void) { if (avx2_usable()) return crypto_register_shash(&sha1_avx2_alg); return 0; } static void unregister_sha1_avx2(void) { if (avx2_usable()) crypto_unregister_shash(&sha1_avx2_alg); } asmlinkage void sha1_ni_transform(struct sha1_state *digest, const u8 *data, int rounds); static int sha1_ni_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, sha1_ni_transform); } static int sha1_ni_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, sha1_ni_transform); } static struct shash_alg sha1_ni_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_ni_update, .finup = sha1_ni_finup, .descsize = SHA1_STATE_SIZE, .base = { .cra_name = "sha1", .cra_driver_name = "sha1-ni", .cra_priority = 250, .cra_flags = CRYPTO_AHASH_ALG_BLOCK_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int register_sha1_ni(void) { if (boot_cpu_has(X86_FEATURE_SHA_NI)) return crypto_register_shash(&sha1_ni_alg); return 0; } static void unregister_sha1_ni(void) { if (boot_cpu_has(X86_FEATURE_SHA_NI)) crypto_unregister_shash(&sha1_ni_alg); } static int __init sha1_ssse3_mod_init(void) { if (!x86_match_cpu(module_cpu_ids)) return -ENODEV; if (register_sha1_ssse3()) goto fail; if (register_sha1_avx()) { unregister_sha1_ssse3(); goto fail; } if (register_sha1_avx2()) { unregister_sha1_avx(); unregister_sha1_ssse3(); goto fail; } if (register_sha1_ni()) { unregister_sha1_avx2(); unregister_sha1_avx(); unregister_sha1_ssse3(); goto fail; } return 0; fail: return -ENODEV; } static void __exit sha1_ssse3_mod_fini(void) { unregister_sha1_ni(); unregister_sha1_avx2(); unregister_sha1_avx(); unregister_sha1_ssse3(); } module_init(sha1_ssse3_mod_init); module_exit(sha1_ssse3_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, Supplemental SSE3 accelerated"); MODULE_ALIAS_CRYPTO("sha1"); MODULE_ALIAS_CRYPTO("sha1-ssse3"); MODULE_ALIAS_CRYPTO("sha1-avx"); MODULE_ALIAS_CRYPTO("sha1-avx2"); MODULE_ALIAS_CRYPTO("sha1-ni");