summaryrefslogtreecommitdiff
path: root/Documentation/trace
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/trace')
-rw-r--r--Documentation/trace/boottime-trace.rst85
-rw-r--r--Documentation/trace/coresight/coresight-config.rst244
-rw-r--r--Documentation/trace/coresight/coresight.rst15
-rw-r--r--Documentation/trace/histogram.rst110
4 files changed, 434 insertions, 20 deletions
diff --git a/Documentation/trace/boottime-trace.rst b/Documentation/trace/boottime-trace.rst
index 8053898cfeb4..6dcfbc64014d 100644
--- a/Documentation/trace/boottime-trace.rst
+++ b/Documentation/trace/boottime-trace.rst
@@ -125,6 +125,71 @@ Note that kprobe and synthetic event definitions can be written under
instance node, but those are also visible from other instances. So please
take care for event name conflict.
+Ftrace Histogram Options
+------------------------
+
+Since it is too long to write a histogram action as a string for per-event
+action option, there are tree-style options under per-event 'hist' subkey
+for the histogram actions. For the detail of the each parameter,
+please read the event histogram document [3]_.
+
+.. [3] See :ref:`Documentation/trace/histogram.rst <histogram>`
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]keys = KEY1[, KEY2[...]]
+ Set histogram key parameters. (Mandatory)
+ The 'N' is a digit string for the multiple histogram. You can omit it
+ if there is one histogram on the event.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]values = VAL1[, VAL2[...]]
+ Set histogram value parameters.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]sort = SORT1[, SORT2[...]]
+ Set histogram sort parameter options.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]size = NR_ENTRIES
+ Set histogram size (number of entries).
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]name = NAME
+ Set histogram name.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]var.VARIABLE = EXPR
+ Define a new VARIABLE by EXPR expression.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]<pause|continue|clear>
+ Set histogram control parameter. You can set one of them.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]onmatch.[M.]event = GROUP.EVENT
+ Set histogram 'onmatch' handler matching event parameter.
+ The 'M' is a digit string for the multiple 'onmatch' handler. You can omit it
+ if there is one 'onmatch' handler on this histogram.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]onmatch.[M.]trace = EVENT[, ARG1[...]]
+ Set histogram 'trace' action for 'onmatch'.
+ EVENT must be a synthetic event name, and ARG1... are parameters
+ for that event. Mandatory if 'onmatch.event' option is set.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]onmax.[M.]var = VAR
+ Set histogram 'onmax' handler variable parameter.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]onchange.[M.]var = VAR
+ Set histogram 'onchange' handler variable parameter.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]<onmax|onchange>.[M.]save = ARG1[, ARG2[...]]
+ Set histogram 'save' action parameters for 'onmax' or 'onchange' handler.
+ This option or below 'snapshot' option is mandatory if 'onmax.var' or
+ 'onchange.var' option is set.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]<onmax|onchange>.[M.]snapshot
+ Set histogram 'snapshot' action for 'onmax' or 'onchange' handler.
+ This option or above 'save' option is mandatory if 'onmax.var' or
+ 'onchange.var' option is set.
+
+ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.filter = FILTER_EXPR
+ Set histogram filter expression. You don't need 'if' in the FILTER_EXPR.
+
+Note that this 'hist' option can conflict with the per-event 'actions'
+option if the 'actions' option has a histogram action.
+
When to Start
=============
@@ -159,13 +224,23 @@ below::
}
synthetic.initcall_latency {
fields = "unsigned long func", "u64 lat"
- actions = "hist:keys=func.sym,lat:vals=lat:sort=lat"
+ hist {
+ keys = func.sym, lat
+ values = lat
+ sort = lat
+ }
}
- initcall.initcall_start {
- actions = "hist:keys=func:ts0=common_timestamp.usecs"
+ initcall.initcall_start.hist {
+ keys = func
+ var.ts0 = common_timestamp.usecs
}
- initcall.initcall_finish {
- actions = "hist:keys=func:lat=common_timestamp.usecs-$ts0:onmatch(initcall.initcall_start).initcall_latency(func,$lat)"
+ initcall.initcall_finish.hist {
+ keys = func
+ var.lat = common_timestamp.usecs - $ts0
+ onmatch {
+ event = initcall.initcall_start
+ trace = initcall_latency, func, $lat
+ }
}
}
diff --git a/Documentation/trace/coresight/coresight-config.rst b/Documentation/trace/coresight/coresight-config.rst
new file mode 100644
index 000000000000..a4e3ef295240
--- /dev/null
+++ b/Documentation/trace/coresight/coresight-config.rst
@@ -0,0 +1,244 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======================================
+CoreSight System Configuration Manager
+======================================
+
+ :Author: Mike Leach <mike.leach@linaro.org>
+ :Date: October 2020
+
+Introduction
+============
+
+The CoreSight System Configuration manager is an API that allows the
+programming of the CoreSight system with pre-defined configurations that
+can then be easily enabled from sysfs or perf.
+
+Many CoreSight components can be programmed in complex ways - especially ETMs.
+In addition, components can interact across the CoreSight system, often via
+the cross trigger components such as CTI and CTM. These system settings can
+be defined and enabled as named configurations.
+
+
+Basic Concepts
+==============
+
+This section introduces the basic concepts of a CoreSight system configuration.
+
+
+Features
+--------
+
+A feature is a named set of programming for a CoreSight device. The programming
+is device dependent, and can be defined in terms of absolute register values,
+resource usage and parameter values.
+
+The feature is defined using a descriptor. This descriptor is used to load onto
+a matching device, either when the feature is loaded into the system, or when the
+CoreSight device is registered with the configuration manager.
+
+The load process involves interpreting the descriptor into a set of register
+accesses in the driver - the resource usage and parameter descriptions
+translated into appropriate register accesses. This interpretation makes it easy
+and efficient for the feature to be programmed onto the device when required.
+
+The feature will not be active on the device until the feature is enabled, and
+the device itself is enabled. When the device is enabled then enabled features
+will be programmed into the device hardware.
+
+A feature is enabled as part of a configuration being enabled on the system.
+
+
+Parameter Value
+~~~~~~~~~~~~~~~
+
+A parameter value is a named value that may be set by the user prior to the
+feature being enabled that can adjust the behaviour of the operation programmed
+by the feature.
+
+For example, this could be a count value in a programmed operation that repeats
+at a given rate. When the feature is enabled then the current value of the
+parameter is used in programming the device.
+
+The feature descriptor defines a default value for a parameter, which is used
+if the user does not supply a new value.
+
+Users can update parameter values using the configfs API for the CoreSight
+system - which is described below.
+
+The current value of the parameter is loaded into the device when the feature
+is enabled on that device.
+
+
+Configurations
+--------------
+
+A configuration defines a set of features that are to be used in a trace
+session where the configuration is selected. For any trace session only one
+configuration may be selected.
+
+The features defined may be on any type of device that is registered
+to support system configuration. A configuration may select features to be
+enabled on a class of devices - i.e. any ETMv4, or specific devices, e.g. a
+specific CTI on the system.
+
+As with the feature, a descriptor is used to define the configuration.
+This will define the features that must be enabled as part of the configuration
+as well as any preset values that can be used to override default parameter
+values.
+
+
+Preset Values
+~~~~~~~~~~~~~
+
+Preset values are easily selectable sets of parameter values for the features
+that the configuration uses. The number of values in a single preset set, equals
+the sum of parameter values in the features used by the configuration.
+
+e.g. a configuration consists of 3 features, one has 2 parameters, one has
+a single parameter, and another has no parameters. A single preset set will
+therefore have 3 values.
+
+Presets are optionally defined by the configuration, up to 15 can be defined.
+If no preset is selected, then the parameter values defined in the feature
+are used as normal.
+
+
+Operation
+~~~~~~~~~
+
+The following steps take place in the operation of a configuration.
+
+1) In this example, the configuration is 'autofdo', which has an
+ associated feature 'strobing' that works on ETMv4 CoreSight Devices.
+
+2) The configuration is enabled. For example 'perf' may select the
+ configuration as part of its command line::
+
+ perf record -e cs_etm/autofdo/ myapp
+
+ which will enable the 'autofdo' configuration.
+
+3) perf starts tracing on the system. As each ETMv4 that perf uses for
+ trace is enabled, the configuration manager will check if the ETMv4
+ has a feature that relates to the currently active configuration.
+ In this case 'strobing' is enabled & programmed into the ETMv4.
+
+4) When the ETMv4 is disabled, any registers marked as needing to be
+ saved will be read back.
+
+5) At the end of the perf session, the configuration will be disabled.
+
+
+Viewing Configurations and Features
+===================================
+
+The set of configurations and features that are currently loaded into the
+system can be viewed using the configfs API.
+
+Mount configfs as normal and the 'cs-syscfg' subsystem will appear::
+
+ $ ls /config
+ cs-syscfg stp-policy
+
+This has two sub-directories::
+
+ $ cd cs-syscfg/
+ $ ls
+ configurations features
+
+The system has the configuration 'autofdo' built in. It may be examined as
+follows::
+
+ $ cd configurations/
+ $ ls
+ autofdo
+ $ cd autofdo/
+ $ ls
+ description preset1 preset3 preset5 preset7 preset9
+ feature_refs preset2 preset4 preset6 preset8
+ $ cat description
+ Setup ETMs with strobing for autofdo
+ $ cat feature_refs
+ strobing
+
+Each preset declared has a preset<n> subdirectory declared. The values for
+the preset can be examined::
+
+ $ cat preset1/values
+ strobing.window = 0x1388 strobing.period = 0x2
+ $ cat preset2/values
+ strobing.window = 0x1388 strobing.period = 0x4
+
+The features referenced by the configuration can be examined in the features
+directory::
+
+ $ cd ../../features/strobing/
+ $ ls
+ description matches nr_params params
+ $ cat description
+ Generate periodic trace capture windows.
+ parameter 'window': a number of CPU cycles (W)
+ parameter 'period': trace enabled for W cycles every period x W cycles
+ $ cat matches
+ SRC_ETMV4
+ $ cat nr_params
+ 2
+
+Move to the params directory to examine and adjust parameters::
+
+ cd params
+ $ ls
+ period window
+ $ cd period
+ $ ls
+ value
+ $ cat value
+ 0x2710
+ # echo 15000 > value
+ # cat value
+ 0x3a98
+
+Parameters adjusted in this way are reflected in all device instances that have
+loaded the feature.
+
+
+Using Configurations in perf
+============================
+
+The configurations loaded into the CoreSight configuration management are
+also declared in the perf 'cs_etm' event infrastructure so that they can
+be selected when running trace under perf::
+
+ $ ls /sys/devices/cs_etm
+ configurations format perf_event_mux_interval_ms sinks type
+ events nr_addr_filters power
+
+Key directories here are 'configurations' - which lists the loaded
+configurations, and 'events' - a generic perf directory which allows
+selection on the perf command line.::
+
+ $ ls configurations/
+ autofdo
+ $ cat configurations/autofdo
+ 0xa7c3dddd
+
+As with the sinks entries, this provides a hash of the configuration name.
+The entry in the 'events' directory uses perfs built in syntax generator
+to substitute the syntax for the name when evaluating the command::
+
+ $ ls events/
+ autofdo
+ $ cat events/autofdo
+ configid=0xa7c3dddd
+
+The 'autofdo' configuration may be selected on the perf command line::
+
+ $ perf record -e cs_etm/autofdo/u --per-thread <application>
+
+A preset to override the current parameter values can also be selected::
+
+ $ perf record -e cs_etm/autofdo,preset=1/u --per-thread <application>
+
+When configurations are selected in this way, then the trace sink used is
+automatically selected.
diff --git a/Documentation/trace/coresight/coresight.rst b/Documentation/trace/coresight/coresight.rst
index 1ec8dc35b1d8..a15571d96cc8 100644
--- a/Documentation/trace/coresight/coresight.rst
+++ b/Documentation/trace/coresight/coresight.rst
@@ -620,6 +620,19 @@ channels on the CTM (Cross Trigger Matrix).
A separate documentation file is provided to explain the use of these devices.
(Documentation/trace/coresight/coresight-ect.rst) [#fourth]_.
+CoreSight System Configuration
+------------------------------
+
+CoreSight components can be complex devices with many programming options.
+Furthermore, components can be programmed to interact with each other across the
+complete system.
+
+A CoreSight System Configuration manager is provided to allow these complex programming
+configurations to be selected and used easily from perf and sysfs.
+
+See the separate document for further information.
+(Documentation/trace/coresight/coresight-config.rst) [#fifth]_.
+
.. [#first] Documentation/ABI/testing/sysfs-bus-coresight-devices-stm
@@ -628,3 +641,5 @@ A separate documentation file is provided to explain the use of these devices.
.. [#third] https://github.com/Linaro/perf-opencsd
.. [#fourth] Documentation/trace/coresight/coresight-ect.rst
+
+.. [#fifth] Documentation/trace/coresight/coresight-config.rst
diff --git a/Documentation/trace/histogram.rst b/Documentation/trace/histogram.rst
index f99be8062bc8..533415644c54 100644
--- a/Documentation/trace/histogram.rst
+++ b/Documentation/trace/histogram.rst
@@ -70,15 +70,16 @@ Documentation written by Tom Zanussi
modified by appending any of the following modifiers to the field
name:
- =========== ==========================================
- .hex display a number as a hex value
- .sym display an address as a symbol
- .sym-offset display an address as a symbol and offset
- .syscall display a syscall id as a system call name
- .execname display a common_pid as a program name
- .log2 display log2 value rather than raw number
- .usecs display a common_timestamp in microseconds
- =========== ==========================================
+ ============= =================================================
+ .hex display a number as a hex value
+ .sym display an address as a symbol
+ .sym-offset display an address as a symbol and offset
+ .syscall display a syscall id as a system call name
+ .execname display a common_pid as a program name
+ .log2 display log2 value rather than raw number
+ .buckets=size display grouping of values rather than raw number
+ .usecs display a common_timestamp in microseconds
+ ============= =================================================
Note that in general the semantics of a given field aren't
interpreted when applying a modifier to it, but there are some
@@ -228,7 +229,7 @@ Extended error information
that lists the total number of bytes requested for each function in
the kernel that made one or more calls to kmalloc::
- # echo 'hist:key=call_site:val=bytes_req' > \
+ # echo 'hist:key=call_site:val=bytes_req.buckets=32' > \
/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger
This tells the tracing system to create a 'hist' trigger using the
@@ -1823,20 +1824,99 @@ and variables defined on other events (see Section 2.2.3 below on
how that is done using hist trigger 'onmatch' action). Once that is
done, the 'wakeup_latency' synthetic event instance is created.
-A histogram can now be defined for the new synthetic event::
-
- # echo 'hist:keys=pid,prio,lat.log2:sort=pid,lat' >> \
- /sys/kernel/debug/tracing/events/synthetic/wakeup_latency/trigger
-
The new event is created under the tracing/events/synthetic/ directory
and looks and behaves just like any other event::
# ls /sys/kernel/debug/tracing/events/synthetic/wakeup_latency
enable filter format hist id trigger
+A histogram can now be defined for the new synthetic event::
+
+ # echo 'hist:keys=pid,prio,lat.log2:sort=lat' >> \
+ /sys/kernel/debug/tracing/events/synthetic/wakeup_latency/trigger
+
+The above shows the latency "lat" in a power of 2 grouping.
+
Like any other event, once a histogram is enabled for the event, the
output can be displayed by reading the event's 'hist' file.
+ # cat /sys/kernel/debug/tracing/events/synthetic/wakeup_latency/hist
+
+ # event histogram
+ #
+ # trigger info: hist:keys=pid,prio,lat.log2:vals=hitcount:sort=lat.log2:size=2048 [active]
+ #
+
+ { pid: 2035, prio: 9, lat: ~ 2^2 } hitcount: 43
+ { pid: 2034, prio: 9, lat: ~ 2^2 } hitcount: 60
+ { pid: 2029, prio: 9, lat: ~ 2^2 } hitcount: 965
+ { pid: 2034, prio: 120, lat: ~ 2^2 } hitcount: 9
+ { pid: 2033, prio: 120, lat: ~ 2^2 } hitcount: 5
+ { pid: 2030, prio: 9, lat: ~ 2^2 } hitcount: 335
+ { pid: 2030, prio: 120, lat: ~ 2^2 } hitcount: 10
+ { pid: 2032, prio: 120, lat: ~ 2^2 } hitcount: 1
+ { pid: 2035, prio: 120, lat: ~ 2^2 } hitcount: 2
+ { pid: 2031, prio: 9, lat: ~ 2^2 } hitcount: 176
+ { pid: 2028, prio: 120, lat: ~ 2^2 } hitcount: 15
+ { pid: 2033, prio: 9, lat: ~ 2^2 } hitcount: 91
+ { pid: 2032, prio: 9, lat: ~ 2^2 } hitcount: 125
+ { pid: 2029, prio: 120, lat: ~ 2^2 } hitcount: 4
+ { pid: 2031, prio: 120, lat: ~ 2^2 } hitcount: 3
+ { pid: 2029, prio: 120, lat: ~ 2^3 } hitcount: 2
+ { pid: 2035, prio: 9, lat: ~ 2^3 } hitcount: 41
+ { pid: 2030, prio: 120, lat: ~ 2^3 } hitcount: 1
+ { pid: 2032, prio: 9, lat: ~ 2^3 } hitcount: 32
+ { pid: 2031, prio: 9, lat: ~ 2^3 } hitcount: 44
+ { pid: 2034, prio: 9, lat: ~ 2^3 } hitcount: 40
+ { pid: 2030, prio: 9, lat: ~ 2^3 } hitcount: 29
+ { pid: 2033, prio: 9, lat: ~ 2^3 } hitcount: 31
+ { pid: 2029, prio: 9, lat: ~ 2^3 } hitcount: 31
+ { pid: 2028, prio: 120, lat: ~ 2^3 } hitcount: 18
+ { pid: 2031, prio: 120, lat: ~ 2^3 } hitcount: 2
+ { pid: 2028, prio: 120, lat: ~ 2^4 } hitcount: 1
+ { pid: 2029, prio: 9, lat: ~ 2^4 } hitcount: 4
+ { pid: 2031, prio: 120, lat: ~ 2^7 } hitcount: 1
+ { pid: 2032, prio: 120, lat: ~ 2^7 } hitcount: 1
+
+ Totals:
+ Hits: 2122
+ Entries: 30
+ Dropped: 0
+
+
+The latency values can also be grouped linearly by a given size with
+the ".buckets" modifier and specify a size (in this case groups of 10).
+
+ # echo 'hist:keys=pid,prio,lat.buckets=10:sort=lat' >> \
+ /sys/kernel/debug/tracing/events/synthetic/wakeup_latency/trigger
+
+ # event histogram
+ #
+ # trigger info: hist:keys=pid,prio,lat.buckets=10:vals=hitcount:sort=lat.buckets=10:size=2048 [active]
+ #
+
+ { pid: 2067, prio: 9, lat: ~ 0-9 } hitcount: 220
+ { pid: 2068, prio: 9, lat: ~ 0-9 } hitcount: 157
+ { pid: 2070, prio: 9, lat: ~ 0-9 } hitcount: 100
+ { pid: 2067, prio: 120, lat: ~ 0-9 } hitcount: 6
+ { pid: 2065, prio: 120, lat: ~ 0-9 } hitcount: 2
+ { pid: 2066, prio: 120, lat: ~ 0-9 } hitcount: 2
+ { pid: 2069, prio: 9, lat: ~ 0-9 } hitcount: 122
+ { pid: 2069, prio: 120, lat: ~ 0-9 } hitcount: 8
+ { pid: 2070, prio: 120, lat: ~ 0-9 } hitcount: 1
+ { pid: 2068, prio: 120, lat: ~ 0-9 } hitcount: 7
+ { pid: 2066, prio: 9, lat: ~ 0-9 } hitcount: 365
+ { pid: 2064, prio: 120, lat: ~ 0-9 } hitcount: 35
+ { pid: 2065, prio: 9, lat: ~ 0-9 } hitcount: 998
+ { pid: 2071, prio: 9, lat: ~ 0-9 } hitcount: 85
+ { pid: 2065, prio: 9, lat: ~ 10-19 } hitcount: 2
+ { pid: 2064, prio: 120, lat: ~ 10-19 } hitcount: 2
+
+ Totals:
+ Hits: 2112
+ Entries: 16
+ Dropped: 0
+
2.2.3 Hist trigger 'handlers' and 'actions'
-------------------------------------------