diff options
Diffstat (limited to 'mm/slab_common.c')
-rw-r--r-- | mm/slab_common.c | 115 |
1 files changed, 89 insertions, 26 deletions
diff --git a/mm/slab_common.c b/mm/slab_common.c index e981c80d216c..7c8298c17145 100644 --- a/mm/slab_common.c +++ b/mm/slab_common.c @@ -197,7 +197,7 @@ struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, size = ALIGN(size, sizeof(void *)); align = calculate_alignment(flags, align, size); size = ALIGN(size, align); - flags = kmem_cache_flags(size, flags, name, NULL); + flags = kmem_cache_flags(size, flags, name); if (flags & SLAB_NEVER_MERGE) return NULL; @@ -309,9 +309,6 @@ kmem_cache_create_usercopy(const char *name, const char *cache_name; int err; - get_online_cpus(); - get_online_mems(); - mutex_lock(&slab_mutex); err = kmem_cache_sanity_check(name, size); @@ -360,9 +357,6 @@ kmem_cache_create_usercopy(const char *name, out_unlock: mutex_unlock(&slab_mutex); - put_online_mems(); - put_online_cpus(); - if (err) { if (flags & SLAB_PANIC) panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", @@ -486,9 +480,6 @@ void kmem_cache_destroy(struct kmem_cache *s) if (unlikely(!s)) return; - get_online_cpus(); - get_online_mems(); - mutex_lock(&slab_mutex); s->refcount--; @@ -503,9 +494,6 @@ void kmem_cache_destroy(struct kmem_cache *s) } out_unlock: mutex_unlock(&slab_mutex); - - put_online_mems(); - put_online_cpus(); } EXPORT_SYMBOL(kmem_cache_destroy); @@ -522,12 +510,10 @@ int kmem_cache_shrink(struct kmem_cache *cachep) { int ret; - get_online_cpus(); - get_online_mems(); + kasan_cache_shrink(cachep); ret = __kmem_cache_shrink(cachep); - put_online_mems(); - put_online_cpus(); + return ret; } EXPORT_SYMBOL(kmem_cache_shrink); @@ -537,6 +523,81 @@ bool slab_is_available(void) return slab_state >= UP; } +/** + * kmem_valid_obj - does the pointer reference a valid slab object? + * @object: pointer to query. + * + * Return: %true if the pointer is to a not-yet-freed object from + * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer + * is to an already-freed object, and %false otherwise. + */ +bool kmem_valid_obj(void *object) +{ + struct page *page; + + /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ + if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) + return false; + page = virt_to_head_page(object); + return PageSlab(page); +} + +/** + * kmem_dump_obj - Print available slab provenance information + * @object: slab object for which to find provenance information. + * + * This function uses pr_cont(), so that the caller is expected to have + * printed out whatever preamble is appropriate. The provenance information + * depends on the type of object and on how much debugging is enabled. + * For a slab-cache object, the fact that it is a slab object is printed, + * and, if available, the slab name, return address, and stack trace from + * the allocation of that object. + * + * This function will splat if passed a pointer to a non-slab object. + * If you are not sure what type of object you have, you should instead + * use mem_dump_obj(). + */ +void kmem_dump_obj(void *object) +{ + char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; + int i; + struct page *page; + unsigned long ptroffset; + struct kmem_obj_info kp = { }; + + if (WARN_ON_ONCE(!virt_addr_valid(object))) + return; + page = virt_to_head_page(object); + if (WARN_ON_ONCE(!PageSlab(page))) { + pr_cont(" non-slab memory.\n"); + return; + } + kmem_obj_info(&kp, object, page); + if (kp.kp_slab_cache) + pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); + else + pr_cont(" slab%s", cp); + if (kp.kp_objp) + pr_cont(" start %px", kp.kp_objp); + if (kp.kp_data_offset) + pr_cont(" data offset %lu", kp.kp_data_offset); + if (kp.kp_objp) { + ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; + pr_cont(" pointer offset %lu", ptroffset); + } + if (kp.kp_slab_cache && kp.kp_slab_cache->usersize) + pr_cont(" size %u", kp.kp_slab_cache->usersize); + if (kp.kp_ret) + pr_cont(" allocated at %pS\n", kp.kp_ret); + else + pr_cont("\n"); + for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { + if (!kp.kp_stack[i]) + break; + pr_info(" %pS\n", kp.kp_stack[i]); + } +} + #ifndef CONFIG_SLOB /* Create a cache during boot when no slab services are available yet */ void __init create_boot_cache(struct kmem_cache *s, const char *name, @@ -837,8 +898,8 @@ void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) page = alloc_pages(flags, order); if (likely(page)) { ret = page_address(page); - mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, - PAGE_SIZE << order); + mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, + PAGE_SIZE << order); } ret = kasan_kmalloc_large(ret, size, flags); /* As ret might get tagged, call kmemleak hook after KASAN. */ @@ -1157,19 +1218,21 @@ size_t ksize(const void *objp) size_t size; /* - * We need to check that the pointed to object is valid, and only then - * unpoison the shadow memory below. We use __kasan_check_read(), to - * generate a more useful report at the time ksize() is called (rather - * than later where behaviour is undefined due to potential - * use-after-free or double-free). + * We need to first check that the pointer to the object is valid, and + * only then unpoison the memory. The report printed from ksize() is + * more useful, then when it's printed later when the behaviour could + * be undefined due to a potential use-after-free or double-free. + * + * We use kasan_check_byte(), which is supported for the hardware + * tag-based KASAN mode, unlike kasan_check_read/write(). * - * If the pointed to memory is invalid we return 0, to avoid users of + * If the pointed to memory is invalid, we return 0 to avoid users of * ksize() writing to and potentially corrupting the memory region. * * We want to perform the check before __ksize(), to avoid potentially * crashing in __ksize() due to accessing invalid metadata. */ - if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1)) + if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) return 0; size = __ksize(objp); |