#ifndef _BCACHE_BTREE_LOCKING_H #define _BCACHE_BTREE_LOCKING_H /* * Only for internal btree use: * * The btree iterator tracks what locks it wants to take, and what locks it * currently has - here we have wrappers for locking/unlocking btree nodes and * updating the iterator state */ #include "btree_iter.h" #include "six.h" /* matches six lock types */ enum btree_node_locked_type { BTREE_NODE_UNLOCKED = -1, BTREE_NODE_READ_LOCKED = SIX_LOCK_read, BTREE_NODE_INTENT_LOCKED = SIX_LOCK_intent, }; static inline int btree_node_locked_type(struct btree_iter *iter, unsigned level) { /* * We're relying on the fact that if nodes_intent_locked is set * nodes_locked must be set as well, so that we can compute without * branches: */ return BTREE_NODE_UNLOCKED + ((iter->nodes_locked >> level) & 1) + ((iter->nodes_intent_locked >> level) & 1); } static inline bool btree_node_intent_locked(struct btree_iter *iter, unsigned level) { return btree_node_locked_type(iter, level) == BTREE_NODE_INTENT_LOCKED; } static inline bool btree_node_read_locked(struct btree_iter *iter, unsigned level) { return btree_node_locked_type(iter, level) == BTREE_NODE_READ_LOCKED; } static inline bool btree_node_locked(struct btree_iter *iter, unsigned level) { return iter->nodes_locked & (1 << level); } static inline void mark_btree_node_unlocked(struct btree_iter *iter, unsigned level) { iter->nodes_locked &= ~(1 << level); iter->nodes_intent_locked &= ~(1 << level); } static inline void mark_btree_node_locked(struct btree_iter *iter, unsigned level, enum six_lock_type type) { /* relying on this to avoid a branch */ BUILD_BUG_ON(SIX_LOCK_read != 0); BUILD_BUG_ON(SIX_LOCK_intent != 1); iter->nodes_locked |= 1 << level; iter->nodes_intent_locked |= type << level; } static inline void mark_btree_node_intent_locked(struct btree_iter *iter, unsigned level) { mark_btree_node_locked(iter, level, SIX_LOCK_intent); } static inline enum six_lock_type btree_lock_want(struct btree_iter *iter, int level) { return level < iter->locks_want ? SIX_LOCK_intent : SIX_LOCK_read; } static inline bool btree_want_intent(struct btree_iter *iter, int level) { return btree_lock_want(iter, level) == SIX_LOCK_intent; } static inline void __btree_node_unlock(struct btree_iter *iter, unsigned level, struct btree *b) { switch (btree_node_locked_type(iter, level)) { case BTREE_NODE_READ_LOCKED: six_unlock_read(&b->lock); break; case BTREE_NODE_INTENT_LOCKED: six_unlock_intent(&b->lock); break; } mark_btree_node_unlocked(iter, level); } static inline void btree_node_unlock(struct btree_iter *iter, unsigned level) { __btree_node_unlock(iter, level, iter->nodes[level]); } static inline void btree_node_lock_type(struct btree *b, struct btree_iter *iter, enum six_lock_type type) { struct btree_iter *linked; if (six_trylock_type(&b->lock, type)) return; for_each_linked_btree_iter(iter, linked) if (linked->nodes[b->level] == b && btree_node_locked_type(linked, b->level) == type) { six_lock_increment(&b->lock, type); return; } six_lock_type(&b->lock, type); } #define __btree_node_lock(b, _iter, _level, check_if_raced) \ ({ \ enum six_lock_type _type = btree_lock_want(_iter, _level); \ bool _raced; \ \ btree_node_lock_type(b, _iter, _type); \ if ((_raced = ((check_if_raced) || ((b)->level != _level)))) \ six_unlock_type(&(b)->lock, _type); \ else \ mark_btree_node_locked(_iter, _level, _type); \ \ !_raced; \ }) #define btree_node_lock(b, iter, level, check_if_raced) \ (!race_fault() && \ __btree_node_lock(b, iter, level, check_if_raced)) bool btree_node_relock(struct btree_iter *, unsigned); void btree_node_unlock_write(struct btree *, struct btree_iter *); void btree_node_lock_write(struct btree *, struct btree_iter *); void __btree_node_unlock_write(struct btree *, struct btree_iter *); void __btree_node_lock_write(struct btree *, struct btree_iter *); #endif /* _BCACHE_BTREE_LOCKING_H */