/* Copyright (C) 1997-2001 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ // r_edge.c #include "sw.h" /* the complex cases add new polys on most lines, so dont optimize for keeping them the same have multiple free span lists to try to get better coherence? low depth complexity -- 1 to 3 or so have a sentinal at both ends? */ edge_t *auxedges; edge_t *r_edges, *edge_p, *edge_max; surf_t *auxsurfaces; surf_t *surfaces, *surface_p, *surf_max; // surfaces are generated in back to front order by the bsp, so if a surf // pointer is greater than another one, it should be drawn in front // surfaces[1] is the background, and is used as the active surface stack edge_t *newedges[MAXHEIGHT]; edge_t *removeedges[MAXHEIGHT]; static espan_t *span_p, *max_span_p; int r_currentkey; static int current_iv; static int edge_head_u_shift20, edge_tail_u_shift20; static void (*pdrawfunc)(void); static edge_t edge_head; static edge_t edge_tail; static edge_t edge_aftertail; static edge_t edge_sentinel; static float fv; static int miplevel; static void R_GenerateSpans(void); static void R_GenerateSpansBackward(void); /* =============================================================================== EDGE SCANNING =============================================================================== */ /* ============== R_BeginEdgeFrame ============== */ void R_BeginEdgeFrame(void) { int v; edge_p = r_edges; edge_max = &r_edges[r_numallocatededges]; surface_p = &surfaces[2]; // background is surface 1, // surface 0 is a dummy surfaces[1].spans = NULL; // no background spans yet surfaces[1].flags = DSURF_BACKGROUND; // put the background behind everything in the world if (sw_draworder->integer) { pdrawfunc = R_GenerateSpansBackward; surfaces[1].key = 0; r_currentkey = 1; } else { pdrawfunc = R_GenerateSpans; surfaces[1].key = 0x7FFFFFFF; r_currentkey = 0; } // FIXME: set with memset for (v = r_refdef.vrect.y; v < r_refdef.vrectbottom; v++) { newedges[v] = removeedges[v] = NULL; } } /* ============== R_InsertNewEdges Adds the edges in the linked list edgestoadd, adding them to the edges in the linked list edgelist. edgestoadd is assumed to be sorted on u, and non-empty (this is actually newedges[v]). edgelist is assumed to be sorted on u, with a sentinel at the end (actually, this is the active edge table starting at edge_head.next). ============== */ static void R_InsertNewEdges(edge_t *edgestoadd, edge_t *edgelist) { edge_t *next_edge; do { next_edge = edgestoadd->next; edgesearch: if (edgelist->u >= edgestoadd->u) goto addedge; edgelist = edgelist->next; if (edgelist->u >= edgestoadd->u) goto addedge; edgelist = edgelist->next; if (edgelist->u >= edgestoadd->u) goto addedge; edgelist = edgelist->next; if (edgelist->u >= edgestoadd->u) goto addedge; edgelist = edgelist->next; goto edgesearch; // insert edgestoadd before edgelist addedge: edgestoadd->next = edgelist; edgestoadd->prev = edgelist->prev; edgelist->prev->next = edgestoadd; edgelist->prev = edgestoadd; } while ((edgestoadd = next_edge) != NULL); } /* ============== R_RemoveEdges ============== */ static void R_RemoveEdges(edge_t *pedge) { do { pedge->next->prev = pedge->prev; pedge->prev->next = pedge->next; } while ((pedge = pedge->nextremove) != NULL); } /* ============== R_StepActiveU ============== */ static void R_StepActiveU(edge_t *pedge) { edge_t *pnext_edge, *pwedge; while (1) { nextedge: pedge->u += pedge->u_step; if (pedge->u < pedge->prev->u) goto pushback; pedge = pedge->next; pedge->u += pedge->u_step; if (pedge->u < pedge->prev->u) goto pushback; pedge = pedge->next; pedge->u += pedge->u_step; if (pedge->u < pedge->prev->u) goto pushback; pedge = pedge->next; pedge->u += pedge->u_step; if (pedge->u < pedge->prev->u) goto pushback; pedge = pedge->next; goto nextedge; pushback: if (pedge == &edge_aftertail) return; // push it back to keep it sorted pnext_edge = pedge->next; // pull the edge out of the edge list pedge->next->prev = pedge->prev; pedge->prev->next = pedge->next; // find out where the edge goes in the edge list pwedge = pedge->prev->prev; while (pwedge->u > pedge->u) { pwedge = pwedge->prev; } // put the edge back into the edge list pedge->next = pwedge->next; pedge->prev = pwedge; pedge->next->prev = pedge; pwedge->next = pedge; pedge = pnext_edge; if (pedge == &edge_tail) return; } } /* ============== R_CleanupSpan ============== */ static void R_CleanupSpan(void) { surf_t *surf; int iu; espan_t *span; // now that we've reached the right edge of the screen, we're done with any // unfinished surfaces, so emit a span for whatever's on top surf = surfaces[1].next; iu = edge_tail_u_shift20; if (iu > surf->last_u) { span = span_p++; span->u = surf->last_u; span->count = iu - span->u; span->v = current_iv; span->pnext = surf->spans; surf->spans = span; } // reset spanstate for all surfaces in the surface stack do { surf->spanstate = 0; surf = surf->next; } while (surf != &surfaces[1]); } /* ============== R_LeadingEdgeBackwards ============== */ static void R_LeadingEdgeBackwards(edge_t *edge) { espan_t *span; surf_t *surf, *surf2; int iu; // it's adding a new surface in, so find the correct place surf = &surfaces[edge->surfs[1]]; // don't start a span if this is an inverted span, with the end // edge preceding the start edge (that is, we've already seen the // end edge) if (++surf->spanstate == 1) { surf2 = surfaces[1].next; if (surf->key > surf2->key) goto newtop; // if it's two surfaces on the same plane, the one that's already // active is in front, so keep going unless it's a bmodel if (surf->insubmodel && (surf->key == surf2->key)) { // must be two bmodels in the same leaf; don't care, because they'll // never be farthest anyway goto newtop; } continue_search: do { surf2 = surf2->next; } while (surf->key < surf2->key); if (surf->key == surf2->key) { // if it's two surfaces on the same plane, the one that's already // active is in front, so keep going unless it's a bmodel if (!surf->insubmodel) goto continue_search; // must be two bmodels in the same leaf; don't care which is really // in front, because they'll never be farthest anyway } goto gotposition; newtop: // emit a span (obscures current top) iu = edge->u >> 20; if (iu > surf2->last_u) { span = span_p++; span->u = surf2->last_u; span->count = iu - span->u; span->v = current_iv; span->pnext = surf2->spans; surf2->spans = span; } // set last_u on the new span surf->last_u = iu; gotposition: // insert before surf2 surf->next = surf2; surf->prev = surf2->prev; surf2->prev->next = surf; surf2->prev = surf; } } /* ============== R_TrailingEdge ============== */ static void R_TrailingEdge(surf_t *surf, edge_t *edge) { espan_t *span; int iu; // don't generate a span if this is an inverted span, with the end // edge preceding the start edge (that is, we haven't seen the // start edge yet) if (--surf->spanstate == 0) { if (surf == surfaces[1].next) { // emit a span (current top going away) iu = edge->u >> 20; if (iu > surf->last_u) { span = span_p++; span->u = surf->last_u; span->count = iu - span->u; span->v = current_iv; span->pnext = surf->spans; surf->spans = span; } // set last_u on the surface below surf->next->last_u = iu; } surf->prev->next = surf->next; surf->next->prev = surf->prev; } } /* ============== R_LeadingEdge ============== */ static void R_LeadingEdge(edge_t *edge) { espan_t *span; surf_t *surf, *surf2; int iu; float fu, newzi, testzi, newzitop, newzibottom; if (edge->surfs[1]) { // it's adding a new surface in, so find the correct place surf = &surfaces[edge->surfs[1]]; // don't start a span if this is an inverted span, with the end // edge preceding the start edge (that is, we've already seen the // end edge) if (++surf->spanstate == 1) { surf2 = surfaces[1].next; if (surf->key < surf2->key) goto newtop; // if it's two surfaces on the same plane, the one that's already // active is in front, so keep going unless it's a bmodel if (surf->insubmodel && (surf->key == surf2->key)) { // must be two bmodels in the same leaf; sort on 1/z fu = (float)(edge->u - 0xFFFFF) * (1.0 / 0x100000); newzi = surf->d_ziorigin + fv * surf->d_zistepv + fu * surf->d_zistepu; newzibottom = newzi * 0.99; testzi = surf2->d_ziorigin + fv * surf2->d_zistepv + fu * surf2->d_zistepu; if (newzibottom >= testzi) { goto newtop; } newzitop = newzi * 1.01; if (newzitop >= testzi) { if (surf->d_zistepu >= surf2->d_zistepu) { goto newtop; } } } continue_search: do { surf2 = surf2->next; } while (surf->key > surf2->key); if (surf->key == surf2->key) { // if it's two surfaces on the same plane, the one that's already // active is in front, so keep going unless it's a bmodel if (!surf->insubmodel) goto continue_search; // must be two bmodels in the same leaf; sort on 1/z fu = (float)(edge->u - 0xFFFFF) * (1.0 / 0x100000); newzi = surf->d_ziorigin + fv * surf->d_zistepv + fu * surf->d_zistepu; newzibottom = newzi * 0.99; testzi = surf2->d_ziorigin + fv * surf2->d_zistepv + fu * surf2->d_zistepu; if (newzibottom >= testzi) { goto gotposition; } newzitop = newzi * 1.01; if (newzitop >= testzi) { if (surf->d_zistepu >= surf2->d_zistepu) { goto gotposition; } } goto continue_search; } goto gotposition; newtop: // emit a span (obscures current top) iu = edge->u >> 20; if (iu > surf2->last_u) { span = span_p++; span->u = surf2->last_u; span->count = iu - span->u; span->v = current_iv; span->pnext = surf2->spans; surf2->spans = span; } // set last_u on the new span surf->last_u = iu; gotposition: // insert before surf2 surf->next = surf2; surf->prev = surf2->prev; surf2->prev->next = surf; surf2->prev = surf; } } } /* ============== R_GenerateSpans ============== */ static void R_GenerateSpans(void) { edge_t *edge; surf_t *surf; // clear active surfaces to just the background surface surfaces[1].next = surfaces[1].prev = &surfaces[1]; surfaces[1].last_u = edge_head_u_shift20; // generate spans for (edge = edge_head.next; edge != &edge_tail; edge = edge->next) { if (edge->surfs[0]) { // it has a left surface, so a surface is going away for this span surf = &surfaces[edge->surfs[0]]; R_TrailingEdge(surf, edge); if (!edge->surfs[1]) continue; } R_LeadingEdge(edge); } R_CleanupSpan(); } /* ============== R_GenerateSpansBackward ============== */ static void R_GenerateSpansBackward(void) { edge_t *edge; // clear active surfaces to just the background surface surfaces[1].next = surfaces[1].prev = &surfaces[1]; surfaces[1].last_u = edge_head_u_shift20; // generate spans for (edge = edge_head.next; edge != &edge_tail; edge = edge->next) { if (edge->surfs[0]) R_TrailingEdge(&surfaces[edge->surfs[0]], edge); if (edge->surfs[1]) R_LeadingEdgeBackwards(edge); } R_CleanupSpan(); } /* ============== R_ScanEdges Input: newedges[] array this has links to edges, which have links to surfaces Output: Each surface has a linked list of its visible spans ============== */ void R_ScanEdges(void) { int iv, bottom; byte basespans[MAXSPANS * sizeof(espan_t) + CACHE_SIZE]; espan_t *basespan_p; surf_t *s; basespan_p = (espan_t *) ((uintptr_t)(basespans + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1)); max_span_p = &basespan_p[MAXSPANS - r_refdef.vrect.width]; span_p = basespan_p; // clear active edges to just the background edges around the whole screen // FIXME: most of this only needs to be set up once edge_head.u = r_refdef.vrect.x << 20; edge_head_u_shift20 = edge_head.u >> 20; edge_head.u_step = 0; edge_head.prev = NULL; edge_head.next = &edge_tail; edge_head.surfs[0] = 0; edge_head.surfs[1] = 1; edge_tail.u = (r_refdef.vrectright << 20) + 0xFFFFF; edge_tail_u_shift20 = edge_tail.u >> 20; edge_tail.u_step = 0; edge_tail.prev = &edge_head; edge_tail.next = &edge_aftertail; edge_tail.surfs[0] = 1; edge_tail.surfs[1] = 0; edge_aftertail.u = -1; // force a move edge_aftertail.u_step = 0; edge_aftertail.next = &edge_sentinel; edge_aftertail.prev = &edge_tail; // FIXME: do we need this now that we clamp x in r_draw.c? edge_sentinel.u = 2000 << 20; // make sure nothing sorts past this edge_sentinel.prev = &edge_aftertail; // // process all scan lines // bottom = r_refdef.vrectbottom - 1; for (iv = r_refdef.vrect.y; iv < bottom; iv++) { current_iv = iv; fv = (float)iv; // mark that the head (background start) span is pre-included surfaces[1].spanstate = 1; if (newedges[iv]) { R_InsertNewEdges(newedges[iv], edge_head.next); } (*pdrawfunc)(); // flush the span list if we can't be sure we have enough spans left for // the next scan if (span_p > max_span_p) { D_DrawSurfaces(); // clear the surface span pointers for (s = &surfaces[1]; s < surface_p; s++) s->spans = NULL; span_p = basespan_p; } if (removeedges[iv]) R_RemoveEdges(removeedges[iv]); if (edge_head.next != &edge_tail) R_StepActiveU(edge_head.next); } // do the last scan (no need to step or sort or remove on the last scan) current_iv = iv; fv = (float)iv; // mark that the head (background start) span is pre-included surfaces[1].spanstate = 1; if (newedges[iv]) R_InsertNewEdges(newedges[iv], edge_head.next); (*pdrawfunc)(); // draw whatever's left in the span list D_DrawSurfaces(); } /* ========================================================================= SURFACE FILLING ========================================================================= */ static vec3_t transformed_modelorg; static vec3_t world_transformed_modelorg; /* ============= D_MipLevelForScale ============= */ static int D_MipLevelForScale(float scale) { int lmiplevel; if (scale >= d_scalemip[0]) lmiplevel = 0; else if (scale >= d_scalemip[1]) lmiplevel = 1; else if (scale >= d_scalemip[2]) lmiplevel = 2; else lmiplevel = 3; if (lmiplevel < d_minmip) lmiplevel = d_minmip; return lmiplevel; } /* ============== D_FlatFillSurface Simple single color fill with no texture mapping ============== */ static void D_FlatFillSurface(surf_t *surf, uint32_t color) { espan_t *span; byte *pdest; int count; for (span = surf->spans; span; span = span->pnext) { pdest = d_spantable[span->v] + span->u * VID_BYTES; count = span->count; do { pdest[0] = color & 0xff; pdest[1] = (color >> 8) & 0xff; pdest[2] = (color >> 16) & 0xff; pdest += VID_BYTES; } while (--count); } } /* ============== D_CalcGradients ============== */ static void D_CalcGradients(mface_t *pface) { float mipscale; vec3_t p_temp1; vec3_t p_saxis, p_taxis; float t; mipscale = 1.0 / (float)(1 << miplevel); R_TransformVector(pface->texinfo->axis[0], p_saxis); R_TransformVector(pface->texinfo->axis[1], p_taxis); t = r_refdef.xscaleinv * mipscale; d_sdivzstepu = p_saxis[0] * t; d_tdivzstepu = p_taxis[0] * t; t = r_refdef.yscaleinv * mipscale; d_sdivzstepv = -p_saxis[1] * t; d_tdivzstepv = -p_taxis[1] * t; d_sdivzorigin = p_saxis[2] * mipscale - r_refdef.xcenter * d_sdivzstepu - r_refdef.ycenter * d_sdivzstepv; d_tdivzorigin = p_taxis[2] * mipscale - r_refdef.xcenter * d_tdivzstepu - r_refdef.ycenter * d_tdivzstepv; VectorScale(transformed_modelorg, mipscale, p_temp1); t = 0x10000 * mipscale; sadjust = ((fixed16_t)(DotProduct(p_temp1, p_saxis) * 0x10000 + 0.5)) - ((pface->texturemins[0] << 16) >> miplevel) + pface->texinfo->offset[0] * t; tadjust = ((fixed16_t)(DotProduct(p_temp1, p_taxis) * 0x10000 + 0.5)) - ((pface->texturemins[1] << 16) >> miplevel) + pface->texinfo->offset[1] * t; if (pface->texinfo->c.flags & SURF_FLOWING) { if (pface->texinfo->c.flags & SURF_WARP) sadjust += 0x10000 * (-128 * ((r_newrefdef.time * 0.25) - (int)(r_newrefdef.time * 0.25))); else sadjust += 0x10000 * (-128 * ((r_newrefdef.time * 0.77) - (int)(r_newrefdef.time * 0.77))); } // // -1 (-epsilon) so we never wander off the edge of the texture // bbextents = ((pface->extents[0] << 16) >> miplevel) - 1; bbextentt = ((pface->extents[1] << 16) >> miplevel) - 1; } /* ============== D_BackgroundSurf The grey background filler seen when there is a hole in the map ============== */ static void D_BackgroundSurf(surf_t *s) { // set up a gradient for the background surface that places it // effectively at infinity distance from the viewpoint d_zistepu = 0; d_zistepv = 0; d_ziorigin = -0.9; D_FlatFillSurface(s, sw_clearcolor->integer & 0xFF); D_DrawZSpans(s->spans); } /* ================= D_TurbulentSurf ================= */ static void D_TurbulentSurf(surf_t *s) { mface_t *pface; d_zistepu = s->d_zistepu; d_zistepv = s->d_zistepv; d_ziorigin = s->d_ziorigin; pface = s->msurf; miplevel = 0; cacheblock = pface->texinfo->image->pixels[0]; cachewidth = TURB_SIZE * TEX_BYTES; if (s->insubmodel) { vec3_t local_modelorg; // FIXME: we don't want to do all this for every polygon! // TODO: store once at start of frame currententity = s->entity; // FIXME: make this passed in to // R_RotateBmodel () VectorSubtract(r_origin, currententity->origin, local_modelorg); R_TransformVector(local_modelorg, transformed_modelorg); R_RotateBmodel(); // FIXME: don't mess with the frustum, // make entity passed in } D_CalcGradients(pface); // textures that aren't warping are just flowing. Use blanktable instead. if (!(pface->texinfo->c.flags & SURF_WARP)) D_DrawTurbulent16(s->spans, blanktable); else D_DrawTurbulent16(s->spans, sintable); D_DrawZSpans(s->spans); if (s->insubmodel) { // // restore the old drawing state // FIXME: we don't want to do this every time! // TODO: speed up // currententity = NULL; // &r_worldentity; VectorCopy(world_transformed_modelorg, transformed_modelorg); VectorCopy(base_vpn, vpn); VectorCopy(base_vup, vup); VectorCopy(base_vright, vright); R_TransformFrustum(); } } /* ============== D_SkySurf ============== */ static void D_SkySurf(surf_t *s) { mface_t *pface; pface = s->msurf; miplevel = 0; d_zistepu = s->d_zistepu; d_zistepv = s->d_zistepv; d_ziorigin = s->d_ziorigin; if (!pface->texinfo->image) { D_FlatFillSurface(s, 0); } else { cacheblock = pface->texinfo->image->pixels[0]; cachewidth = 256 * TEX_BYTES; D_CalcGradients(pface); D_DrawSpans16(s->spans); } // set up a gradient for the background surface that places it // effectively at infinity distance from the viewpoint d_zistepu = 0; d_zistepv = 0; d_ziorigin = -0.9; D_DrawZSpans(s->spans); } /* ============== D_SolidSurf Normal surface cached, texture mapped surface ============== */ static void D_SolidSurf(surf_t *s) { surfcache_t *pcurrentcache; mface_t *pface; d_zistepu = s->d_zistepu; d_zistepv = s->d_zistepv; d_ziorigin = s->d_ziorigin; if (s->insubmodel) { vec3_t local_modelorg; // FIXME: we don't want to do all this for every polygon! // TODO: store once at start of frame currententity = s->entity; // FIXME: make this passed in to // R_RotateBmodel () VectorSubtract(r_origin, currententity->origin, local_modelorg); R_TransformVector(local_modelorg, transformed_modelorg); R_RotateBmodel(); // FIXME: don't mess with the frustum, // make entity passed in } else { currententity = &r_worldentity; } pface = s->msurf; miplevel = D_MipLevelForScale(s->nearzi * r_refdef.scale_for_mip * pface->texinfo->mipadjust); // FIXME: make this passed in to D_CacheSurface pcurrentcache = D_CacheSurface(pface, miplevel); cacheblock = (pixel_t *)pcurrentcache->data; cachewidth = pcurrentcache->width * TEX_BYTES; D_CalcGradients(pface); D_DrawSpans16(s->spans); D_DrawZSpans(s->spans); if (s->insubmodel) { // // restore the old drawing state // FIXME: we don't want to do this every time! // TODO: speed up // VectorCopy(world_transformed_modelorg, transformed_modelorg); VectorCopy(base_vpn, vpn); VectorCopy(base_vup, vup); VectorCopy(base_vright, vright); R_TransformFrustum(); currententity = NULL; //&r_worldentity; } } /* ============= D_DrawflatSurfaces To allow developers to see the polygon carving of the world ============= */ static void D_DrawflatSurfaces(void) { surf_t *s; for (s = &surfaces[1]; s < surface_p; s++) { if (!s->spans) continue; d_zistepu = s->d_zistepu; d_zistepv = s->d_zistepv; d_ziorigin = s->d_ziorigin; // make a stable color for each surface by taking the low // bits of the msurface pointer D_FlatFillSurface(s, (uint32_t)((intptr_t)s->msurf)); D_DrawZSpans(s->spans); } } /* ============= D_DrawZSurfaces ============= */ static void D_DrawZSurfaces(void) { surf_t *s; for (s = &surfaces[1]; s < surface_p; s++) { if (!s->spans) continue; d_zistepu = s->d_zistepu; d_zistepv = s->d_zistepv; d_ziorigin = s->d_ziorigin; D_DrawZSpans(s->spans); } } /* ============== D_DrawSurfaces Rasterize all the span lists. Guaranteed zero overdraw. May be called more than once a frame if the surf list overflows (higher res) ============== */ void D_DrawSurfaces(void) { surf_t *s; // currententity = NULL; //&r_worldentity; VectorSubtract(r_origin, vec3_origin, modelorg); R_TransformVector(modelorg, transformed_modelorg); VectorCopy(transformed_modelorg, world_transformed_modelorg); if (sw_drawsird->integer) { D_DrawZSurfaces(); } else if (sw_drawflat->integer) { D_DrawflatSurfaces(); } else { for (s = &surfaces[1]; s < surface_p; s++) { if (!s->spans) continue; r_drawnpolycount++; if (s->flags & DSURF_SKY) D_SkySurf(s); else if (s->flags & DSURF_BACKGROUND) D_BackgroundSurf(s); else if (s->flags & DSURF_TURB) D_TurbulentSurf(s); else D_SolidSurf(s); } } currententity = NULL; //&r_worldentity; VectorSubtract(r_origin, vec3_origin, modelorg); R_TransformFrustum(); }