diff options
Diffstat (limited to 'libbcachefs/alloc.c')
-rw-r--r-- | libbcachefs/alloc.c | 1913 |
1 files changed, 1913 insertions, 0 deletions
diff --git a/libbcachefs/alloc.c b/libbcachefs/alloc.c new file mode 100644 index 00000000..3067181c --- /dev/null +++ b/libbcachefs/alloc.c @@ -0,0 +1,1913 @@ +/* + * Primary bucket allocation code + * + * Copyright 2012 Google, Inc. + * + * Allocation in bcache is done in terms of buckets: + * + * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in + * btree pointers - they must match for the pointer to be considered valid. + * + * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a + * bucket simply by incrementing its gen. + * + * The gens (along with the priorities; it's really the gens are important but + * the code is named as if it's the priorities) are written in an arbitrary list + * of buckets on disk, with a pointer to them in the journal header. + * + * When we invalidate a bucket, we have to write its new gen to disk and wait + * for that write to complete before we use it - otherwise after a crash we + * could have pointers that appeared to be good but pointed to data that had + * been overwritten. + * + * Since the gens and priorities are all stored contiguously on disk, we can + * batch this up: We fill up the free_inc list with freshly invalidated buckets, + * call prio_write(), and when prio_write() finishes we pull buckets off the + * free_inc list and optionally discard them. + * + * free_inc isn't the only freelist - if it was, we'd often have to sleep while + * priorities and gens were being written before we could allocate. c->free is a + * smaller freelist, and buckets on that list are always ready to be used. + * + * If we've got discards enabled, that happens when a bucket moves from the + * free_inc list to the free list. + * + * It's important to ensure that gens don't wrap around - with respect to + * either the oldest gen in the btree or the gen on disk. This is quite + * difficult to do in practice, but we explicitly guard against it anyways - if + * a bucket is in danger of wrapping around we simply skip invalidating it that + * time around, and we garbage collect or rewrite the priorities sooner than we + * would have otherwise. + * + * bch2_bucket_alloc() allocates a single bucket from a specific device. + * + * bch2_bucket_alloc_set() allocates one or more buckets from different devices + * in a given filesystem. + * + * invalidate_buckets() drives all the processes described above. It's called + * from bch2_bucket_alloc() and a few other places that need to make sure free + * buckets are ready. + * + * invalidate_buckets_(lru|fifo)() find buckets that are available to be + * invalidated, and then invalidate them and stick them on the free_inc list - + * in either lru or fifo order. + */ + +#include "bcachefs.h" +#include "alloc.h" +#include "btree_update.h" +#include "buckets.h" +#include "checksum.h" +#include "clock.h" +#include "debug.h" +#include "error.h" +#include "extents.h" +#include "io.h" +#include "journal.h" +#include "super-io.h" + +#include <linux/blkdev.h> +#include <linux/kthread.h> +#include <linux/math64.h> +#include <linux/random.h> +#include <linux/rcupdate.h> +#include <trace/events/bcachefs.h> + +static void __bch2_bucket_free(struct bch_dev *, struct bucket *); +static void bch2_recalc_min_prio(struct bch_dev *, int); + +/* Allocation groups: */ + +void bch2_dev_group_remove(struct dev_group *grp, struct bch_dev *ca) +{ + unsigned i; + + spin_lock(&grp->lock); + + for (i = 0; i < grp->nr; i++) + if (grp->d[i].dev == ca) { + grp->nr--; + memmove(&grp->d[i], + &grp->d[i + 1], + (grp->nr- i) * sizeof(grp->d[0])); + break; + } + + spin_unlock(&grp->lock); +} + +void bch2_dev_group_add(struct dev_group *grp, struct bch_dev *ca) +{ + unsigned i; + + spin_lock(&grp->lock); + for (i = 0; i < grp->nr; i++) + if (grp->d[i].dev == ca) + goto out; + + BUG_ON(grp->nr>= BCH_SB_MEMBERS_MAX); + + grp->d[grp->nr++].dev = ca; +out: + spin_unlock(&grp->lock); +} + +/* Ratelimiting/PD controllers */ + +static void pd_controllers_update(struct work_struct *work) +{ + struct bch_fs *c = container_of(to_delayed_work(work), + struct bch_fs, + pd_controllers_update); + struct bch_dev *ca; + unsigned i, iter; + + /* All units are in bytes */ + u64 faster_tiers_size = 0; + u64 faster_tiers_dirty = 0; + + u64 fastest_tier_size = 0; + u64 fastest_tier_free = 0; + u64 copygc_can_free = 0; + + rcu_read_lock(); + for (i = 0; i < ARRAY_SIZE(c->tiers); i++) { + bch2_pd_controller_update(&c->tiers[i].pd, + div_u64(faster_tiers_size * + c->tiering_percent, 100), + faster_tiers_dirty, + -1); + + spin_lock(&c->tiers[i].devs.lock); + group_for_each_dev(ca, &c->tiers[i].devs, iter) { + struct bch_dev_usage stats = bch2_dev_usage_read(ca); + unsigned bucket_bits = ca->bucket_bits + 9; + + u64 size = (ca->mi.nbuckets - + ca->mi.first_bucket) << bucket_bits; + u64 dirty = stats.buckets_dirty << bucket_bits; + u64 free = __dev_buckets_free(ca, stats) << bucket_bits; + /* + * Bytes of internal fragmentation, which can be + * reclaimed by copy GC + */ + s64 fragmented = ((stats.buckets_dirty + + stats.buckets_cached) << + bucket_bits) - + ((stats.sectors[S_DIRTY] + + stats.sectors[S_CACHED] ) << 9); + + fragmented = max(0LL, fragmented); + + bch2_pd_controller_update(&ca->moving_gc_pd, + free, fragmented, -1); + + faster_tiers_size += size; + faster_tiers_dirty += dirty; + + if (!c->fastest_tier || + c->fastest_tier == &c->tiers[i]) { + fastest_tier_size += size; + fastest_tier_free += free; + } + + copygc_can_free += fragmented; + } + spin_unlock(&c->tiers[i].devs.lock); + } + + rcu_read_unlock(); + + /* + * Throttle foreground writes if tier 0 is running out of free buckets, + * and either tiering or copygc can free up space. + * + * Target will be small if there isn't any work to do - we don't want to + * throttle foreground writes if we currently have all the free space + * we're ever going to have. + * + * Otherwise, if there's work to do, try to keep 20% of tier0 available + * for foreground writes. + */ + if (c->fastest_tier) + copygc_can_free = U64_MAX; + + bch2_pd_controller_update(&c->foreground_write_pd, + min(copygc_can_free, + div_u64(fastest_tier_size * + c->foreground_target_percent, + 100)), + fastest_tier_free, + -1); + + schedule_delayed_work(&c->pd_controllers_update, + c->pd_controllers_update_seconds * HZ); +} + +/* + * Bucket priorities/gens: + * + * For each bucket, we store on disk its + * 8 bit gen + * 16 bit priority + * + * See alloc.c for an explanation of the gen. The priority is used to implement + * lru (and in the future other) cache replacement policies; for most purposes + * it's just an opaque integer. + * + * The gens and the priorities don't have a whole lot to do with each other, and + * it's actually the gens that must be written out at specific times - it's no + * big deal if the priorities don't get written, if we lose them we just reuse + * buckets in suboptimal order. + * + * On disk they're stored in a packed array, and in as many buckets are required + * to fit them all. The buckets we use to store them form a list; the journal + * header points to the first bucket, the first bucket points to the second + * bucket, et cetera. + * + * This code is used by the allocation code; periodically (whenever it runs out + * of buckets to allocate from) the allocation code will invalidate some + * buckets, but it can't use those buckets until their new gens are safely on + * disk. + */ + +static int prio_io(struct bch_dev *ca, uint64_t bucket, int op) +{ + bio_init(ca->bio_prio); + bio_set_op_attrs(ca->bio_prio, op, REQ_SYNC|REQ_META); + + ca->bio_prio->bi_max_vecs = bucket_pages(ca); + ca->bio_prio->bi_io_vec = ca->bio_prio->bi_inline_vecs; + ca->bio_prio->bi_iter.bi_sector = bucket * ca->mi.bucket_size; + ca->bio_prio->bi_bdev = ca->disk_sb.bdev; + ca->bio_prio->bi_iter.bi_size = bucket_bytes(ca); + bch2_bio_map(ca->bio_prio, ca->disk_buckets); + + return submit_bio_wait(ca->bio_prio); +} + +static struct nonce prio_nonce(struct prio_set *p) +{ + return (struct nonce) {{ + [0] = 0, + [1] = p->nonce[0], + [2] = p->nonce[1], + [3] = p->nonce[2]^BCH_NONCE_PRIO, + }}; +} + +static int bch2_prio_write(struct bch_dev *ca) +{ + struct bch_fs *c = ca->fs; + struct journal *j = &c->journal; + struct journal_res res = { 0 }; + bool need_new_journal_entry; + int i, ret; + + if (c->opts.nochanges) + return 0; + + trace_prio_write_start(ca); + + atomic64_add(ca->mi.bucket_size * prio_buckets(ca), + &ca->meta_sectors_written); + + for (i = prio_buckets(ca) - 1; i >= 0; --i) { + struct bucket *g; + struct prio_set *p = ca->disk_buckets; + struct bucket_disk *d = p->data; + struct bucket_disk *end = d + prios_per_bucket(ca); + size_t r; + + for (r = i * prios_per_bucket(ca); + r < ca->mi.nbuckets && d < end; + r++, d++) { + g = ca->buckets + r; + d->read_prio = cpu_to_le16(g->read_prio); + d->write_prio = cpu_to_le16(g->write_prio); + d->gen = ca->buckets[r].mark.gen; + } + + p->next_bucket = cpu_to_le64(ca->prio_buckets[i + 1]); + p->magic = cpu_to_le64(pset_magic(c)); + get_random_bytes(&p->nonce, sizeof(p->nonce)); + + spin_lock(&ca->prio_buckets_lock); + r = bch2_bucket_alloc(ca, RESERVE_PRIO); + BUG_ON(!r); + + /* + * goes here before dropping prio_buckets_lock to guard against + * it getting gc'd from under us + */ + ca->prio_buckets[i] = r; + bch2_mark_metadata_bucket(ca, ca->buckets + r, + BUCKET_PRIOS, false); + spin_unlock(&ca->prio_buckets_lock); + + SET_PSET_CSUM_TYPE(p, bch2_meta_checksum_type(c)); + + bch2_encrypt(c, PSET_CSUM_TYPE(p), + prio_nonce(p), + p->encrypted_start, + bucket_bytes(ca) - + offsetof(struct prio_set, encrypted_start)); + + p->csum = bch2_checksum(c, PSET_CSUM_TYPE(p), + prio_nonce(p), + (void *) p + sizeof(p->csum), + bucket_bytes(ca) - sizeof(p->csum)); + + ret = prio_io(ca, r, REQ_OP_WRITE); + if (bch2_dev_fatal_io_err_on(ret, ca, + "prio write to bucket %zu", r) || + bch2_meta_write_fault("prio")) + return ret; + } + + spin_lock(&j->lock); + j->prio_buckets[ca->dev_idx] = cpu_to_le64(ca->prio_buckets[0]); + j->nr_prio_buckets = max_t(unsigned, + ca->dev_idx + 1, + j->nr_prio_buckets); + spin_unlock(&j->lock); + + do { + unsigned u64s = jset_u64s(0); + + if (!test_bit(JOURNAL_STARTED, &c->journal.flags)) + break; + + ret = bch2_journal_res_get(j, &res, u64s, u64s); + if (ret) + return ret; + + need_new_journal_entry = j->buf[res.idx].nr_prio_buckets < + ca->dev_idx + 1; + bch2_journal_res_put(j, &res); + + ret = bch2_journal_flush_seq(j, res.seq); + if (ret) + return ret; + } while (need_new_journal_entry); + + /* + * Don't want the old priorities to get garbage collected until after we + * finish writing the new ones, and they're journalled + */ + + spin_lock(&ca->prio_buckets_lock); + + for (i = 0; i < prio_buckets(ca); i++) { + if (ca->prio_last_buckets[i]) + __bch2_bucket_free(ca, + &ca->buckets[ca->prio_last_buckets[i]]); + + ca->prio_last_buckets[i] = ca->prio_buckets[i]; + } + + spin_unlock(&ca->prio_buckets_lock); + + trace_prio_write_end(ca); + return 0; +} + +int bch2_prio_read(struct bch_dev *ca) +{ + struct bch_fs *c = ca->fs; + struct prio_set *p = ca->disk_buckets; + struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; + struct bucket_mark new; + struct bch_csum csum; + unsigned bucket_nr = 0; + u64 bucket, expect, got; + size_t b; + int ret = 0; + + spin_lock(&c->journal.lock); + bucket = le64_to_cpu(c->journal.prio_buckets[ca->dev_idx]); + spin_unlock(&c->journal.lock); + + /* + * If the device hasn't been used yet, there won't be a prio bucket ptr + */ + if (!bucket) + return 0; + + unfixable_fsck_err_on(bucket < ca->mi.first_bucket || + bucket >= ca->mi.nbuckets, c, + "bad prio bucket %llu", bucket); + + for (b = 0; b < ca->mi.nbuckets; b++, d++) { + if (d == end) { + ca->prio_last_buckets[bucket_nr] = bucket; + bucket_nr++; + + ret = prio_io(ca, bucket, REQ_OP_READ); + if (bch2_dev_fatal_io_err_on(ret, ca, + "prior read from bucket %llu", + bucket) || + bch2_meta_read_fault("prio")) + return -EIO; + + got = le64_to_cpu(p->magic); + expect = pset_magic(c); + unfixable_fsck_err_on(got != expect, c, + "bad magic (got %llu expect %llu) while reading prios from bucket %llu", + got, expect, bucket); + + unfixable_fsck_err_on(PSET_CSUM_TYPE(p) >= BCH_CSUM_NR, c, + "prio bucket with unknown csum type %llu bucket %lluu", + PSET_CSUM_TYPE(p), bucket); + + csum = bch2_checksum(c, PSET_CSUM_TYPE(p), + prio_nonce(p), + (void *) p + sizeof(p->csum), + bucket_bytes(ca) - sizeof(p->csum)); + unfixable_fsck_err_on(bch2_crc_cmp(csum, p->csum), c, + "bad checksum reading prios from bucket %llu", + bucket); + + bch2_encrypt(c, PSET_CSUM_TYPE(p), + prio_nonce(p), + p->encrypted_start, + bucket_bytes(ca) - + offsetof(struct prio_set, encrypted_start)); + + bucket = le64_to_cpu(p->next_bucket); + d = p->data; + } + + ca->buckets[b].read_prio = le16_to_cpu(d->read_prio); + ca->buckets[b].write_prio = le16_to_cpu(d->write_prio); + + bucket_cmpxchg(&ca->buckets[b], new, new.gen = d->gen); + } + + mutex_lock(&c->bucket_lock); + bch2_recalc_min_prio(ca, READ); + bch2_recalc_min_prio(ca, WRITE); + mutex_unlock(&c->bucket_lock); + + ret = 0; +fsck_err: + return ret; +} + +#define BUCKET_GC_GEN_MAX 96U + +/** + * wait_buckets_available - wait on reclaimable buckets + * + * If there aren't enough available buckets to fill up free_inc, wait until + * there are. + */ +static int wait_buckets_available(struct bch_dev *ca) +{ + struct bch_fs *c = ca->fs; + int ret = 0; + + while (1) { + set_current_state(TASK_INTERRUPTIBLE); + if (kthread_should_stop()) { + ret = -1; + break; + } + + if (ca->inc_gen_needs_gc >= fifo_free(&ca->free_inc)) { + if (c->gc_thread) { + trace_gc_cannot_inc_gens(ca->fs); + atomic_inc(&c->kick_gc); + wake_up_process(ca->fs->gc_thread); + } + + /* + * We are going to wait for GC to wake us up, even if + * bucket counters tell us enough buckets are available, + * because we are actually waiting for GC to rewrite + * nodes with stale pointers + */ + } else if (dev_buckets_available(ca) >= + fifo_free(&ca->free_inc)) + break; + + up_read(&ca->fs->gc_lock); + schedule(); + try_to_freeze(); + down_read(&ca->fs->gc_lock); + } + + __set_current_state(TASK_RUNNING); + return ret; +} + +static void verify_not_on_freelist(struct bch_dev *ca, size_t bucket) +{ + if (expensive_debug_checks(ca->fs)) { + size_t iter; + long i; + unsigned j; + + for (iter = 0; iter < prio_buckets(ca) * 2; iter++) + BUG_ON(ca->prio_buckets[iter] == bucket); + + for (j = 0; j < RESERVE_NR; j++) + fifo_for_each_entry(i, &ca->free[j], iter) + BUG_ON(i == bucket); + fifo_for_each_entry(i, &ca->free_inc, iter) + BUG_ON(i == bucket); + } +} + +/* Bucket heap / gen */ + +void bch2_recalc_min_prio(struct bch_dev *ca, int rw) +{ + struct bch_fs *c = ca->fs; + struct prio_clock *clock = &c->prio_clock[rw]; + struct bucket *g; + u16 max_delta = 1; + unsigned i; + + lockdep_assert_held(&c->bucket_lock); + + /* Determine min prio for this particular cache */ + for_each_bucket(g, ca) + max_delta = max(max_delta, (u16) (clock->hand - g->prio[rw])); + + ca->min_prio[rw] = clock->hand - max_delta; + + /* + * This may possibly increase the min prio for the whole cache, check + * that as well. + */ + max_delta = 1; + + for_each_member_device(ca, c, i) + max_delta = max(max_delta, + (u16) (clock->hand - ca->min_prio[rw])); + + clock->min_prio = clock->hand - max_delta; +} + +static void bch2_rescale_prios(struct bch_fs *c, int rw) +{ + struct prio_clock *clock = &c->prio_clock[rw]; + struct bch_dev *ca; + struct bucket *g; + unsigned i; + + trace_rescale_prios(c); + + for_each_member_device(ca, c, i) { + for_each_bucket(g, ca) + g->prio[rw] = clock->hand - + (clock->hand - g->prio[rw]) / 2; + + bch2_recalc_min_prio(ca, rw); + } +} + +static void bch2_inc_clock_hand(struct io_timer *timer) +{ + struct prio_clock *clock = container_of(timer, + struct prio_clock, rescale); + struct bch_fs *c = container_of(clock, + struct bch_fs, prio_clock[clock->rw]); + u64 capacity; + + mutex_lock(&c->bucket_lock); + + clock->hand++; + + /* if clock cannot be advanced more, rescale prio */ + if (clock->hand == (u16) (clock->min_prio - 1)) + bch2_rescale_prios(c, clock->rw); + + mutex_unlock(&c->bucket_lock); + + capacity = READ_ONCE(c->capacity); + + if (!capacity) + return; + + /* + * we only increment when 0.1% of the filesystem capacity has been read + * or written too, this determines if it's time + * + * XXX: we shouldn't really be going off of the capacity of devices in + * RW mode (that will be 0 when we're RO, yet we can still service + * reads) + */ + timer->expire += capacity >> 10; + + bch2_io_timer_add(&c->io_clock[clock->rw], timer); +} + +static void bch2_prio_timer_init(struct bch_fs *c, int rw) +{ + struct prio_clock *clock = &c->prio_clock[rw]; + struct io_timer *timer = &clock->rescale; + + clock->rw = rw; + timer->fn = bch2_inc_clock_hand; + timer->expire = c->capacity >> 10; +} + +/* + * Background allocation thread: scans for buckets to be invalidated, + * invalidates them, rewrites prios/gens (marking them as invalidated on disk), + * then optionally issues discard commands to the newly free buckets, then puts + * them on the various freelists. + */ + +static inline bool can_inc_bucket_gen(struct bch_dev *ca, struct bucket *g) +{ + return bucket_gc_gen(ca, g) < BUCKET_GC_GEN_MAX; +} + +static bool bch2_can_invalidate_bucket(struct bch_dev *ca, struct bucket *g) +{ + if (!is_available_bucket(READ_ONCE(g->mark))) + return false; + + if (bucket_gc_gen(ca, g) >= BUCKET_GC_GEN_MAX - 1) + ca->inc_gen_needs_gc++; + + return can_inc_bucket_gen(ca, g); +} + +static void bch2_invalidate_one_bucket(struct bch_dev *ca, struct bucket *g) +{ + spin_lock(&ca->freelist_lock); + + bch2_invalidate_bucket(ca, g); + + g->read_prio = ca->fs->prio_clock[READ].hand; + g->write_prio = ca->fs->prio_clock[WRITE].hand; + + verify_not_on_freelist(ca, g - ca->buckets); + BUG_ON(!fifo_push(&ca->free_inc, g - ca->buckets)); + + spin_unlock(&ca->freelist_lock); +} + +/* + * Determines what order we're going to reuse buckets, smallest bucket_key() + * first. + * + * + * - We take into account the read prio of the bucket, which gives us an + * indication of how hot the data is -- we scale the prio so that the prio + * farthest from the clock is worth 1/8th of the closest. + * + * - The number of sectors of cached data in the bucket, which gives us an + * indication of the cost in cache misses this eviction will cause. + * + * - The difference between the bucket's current gen and oldest gen of any + * pointer into it, which gives us an indication of the cost of an eventual + * btree GC to rewrite nodes with stale pointers. + */ + +#define bucket_sort_key(g) \ +({ \ + unsigned long prio = g->read_prio - ca->min_prio[READ]; \ + prio = (prio * 7) / (ca->fs->prio_clock[READ].hand - \ + ca->min_prio[READ]); \ + \ + (((prio + 1) * bucket_sectors_used(g)) << 8) | bucket_gc_gen(ca, g);\ +}) + +static void invalidate_buckets_lru(struct bch_dev *ca) +{ + struct bucket_heap_entry e; + struct bucket *g; + unsigned i; + + mutex_lock(&ca->heap_lock); + + ca->heap.used = 0; + + mutex_lock(&ca->fs->bucket_lock); + bch2_recalc_min_prio(ca, READ); + bch2_recalc_min_prio(ca, WRITE); + + /* + * Find buckets with lowest read priority, by building a maxheap sorted + * by read priority and repeatedly replacing the maximum element until + * all buckets have been visited. + */ + for_each_bucket(g, ca) { + if (!bch2_can_invalidate_bucket(ca, g)) + continue; + + bucket_heap_push(ca, g, bucket_sort_key(g)); + } + + /* Sort buckets by physical location on disk for better locality */ + for (i = 0; i < ca->heap.used; i++) { + struct bucket_heap_entry *e = &ca->heap.data[i]; + + e->val = e->g - ca->buckets; + } + + heap_resort(&ca->heap, bucket_max_cmp); + + /* + * If we run out of buckets to invalidate, bch2_allocator_thread() will + * kick stuff and retry us + */ + while (!fifo_full(&ca->free_inc) && + heap_pop(&ca->heap, e, bucket_max_cmp)) { + BUG_ON(!bch2_can_invalidate_bucket(ca, e.g)); + bch2_invalidate_one_bucket(ca, e.g); + } + + mutex_unlock(&ca->fs->bucket_lock); + mutex_unlock(&ca->heap_lock); +} + +static void invalidate_buckets_fifo(struct bch_dev *ca) +{ + struct bucket *g; + size_t checked = 0; + + while (!fifo_full(&ca->free_inc)) { + if (ca->fifo_last_bucket < ca->mi.first_bucket || + ca->fifo_last_bucket >= ca->mi.nbuckets) + ca->fifo_last_bucket = ca->mi.first_bucket; + + g = ca->buckets + ca->fifo_last_bucket++; + + if (bch2_can_invalidate_bucket(ca, g)) + bch2_invalidate_one_bucket(ca, g); + + if (++checked >= ca->mi.nbuckets) + return; + } +} + +static void invalidate_buckets_random(struct bch_dev *ca) +{ + struct bucket *g; + size_t checked = 0; + + while (!fifo_full(&ca->free_inc)) { + size_t n = bch2_rand_range(ca->mi.nbuckets - + ca->mi.first_bucket) + + ca->mi.first_bucket; + + g = ca->buckets + n; + + if (bch2_can_invalidate_bucket(ca, g)) + bch2_invalidate_one_bucket(ca, g); + + if (++checked >= ca->mi.nbuckets / 2) + return; + } +} + +static void invalidate_buckets(struct bch_dev *ca) +{ + ca->inc_gen_needs_gc = 0; + + switch (ca->mi.replacement) { + case CACHE_REPLACEMENT_LRU: + invalidate_buckets_lru(ca); + break; + case CACHE_REPLACEMENT_FIFO: + invalidate_buckets_fifo(ca); + break; + case CACHE_REPLACEMENT_RANDOM: + invalidate_buckets_random(ca); + break; + } +} + +static bool __bch2_allocator_push(struct bch_dev *ca, long bucket) +{ + if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) + goto success; + + if (fifo_push(&ca->free[RESERVE_MOVINGGC], bucket)) + goto success; + + if (fifo_push(&ca->free[RESERVE_BTREE], bucket)) + goto success; + + if (fifo_push(&ca->free[RESERVE_NONE], bucket)) + goto success; + + return false; +success: + closure_wake_up(&ca->fs->freelist_wait); + return true; +} + +static bool bch2_allocator_push(struct bch_dev *ca, long bucket) +{ + bool ret; + + spin_lock(&ca->freelist_lock); + ret = __bch2_allocator_push(ca, bucket); + if (ret) + fifo_pop(&ca->free_inc, bucket); + spin_unlock(&ca->freelist_lock); + + return ret; +} + +static void bch2_find_empty_buckets(struct bch_fs *c, struct bch_dev *ca) +{ + u16 last_seq_ondisk = c->journal.last_seq_ondisk; + struct bucket *g; + + for_each_bucket(g, ca) { + struct bucket_mark m = READ_ONCE(g->mark); + + if (is_available_bucket(m) && + !m.cached_sectors && + !m.had_metadata && + !bucket_needs_journal_commit(m, last_seq_ondisk)) { + spin_lock(&ca->freelist_lock); + + bch2_mark_alloc_bucket(ca, g, true); + g->read_prio = c->prio_clock[READ].hand; + g->write_prio = c->prio_clock[WRITE].hand; + + verify_not_on_freelist(ca, g - ca->buckets); + BUG_ON(!fifo_push(&ca->free_inc, g - ca->buckets)); + + spin_unlock(&ca->freelist_lock); + + if (fifo_full(&ca->free_inc)) + break; + } + } +} + +/** + * bch_allocator_thread - move buckets from free_inc to reserves + * + * The free_inc FIFO is populated by invalidate_buckets(), and + * the reserves are depleted by bucket allocation. When we run out + * of free_inc, try to invalidate some buckets and write out + * prios and gens. + */ +static int bch2_allocator_thread(void *arg) +{ + struct bch_dev *ca = arg; + struct bch_fs *c = ca->fs; + int ret; + + set_freezable(); + + bch2_find_empty_buckets(c, ca); + + while (1) { + /* + * First, we pull buckets off of the free_inc list, possibly + * issue discards to them, then we add the bucket to a + * free list: + */ + + while (!fifo_empty(&ca->free_inc)) { + long bucket = fifo_peek(&ca->free_inc); + + /* + * Don't remove from free_inc until after it's added + * to freelist, so gc doesn't miss it while we've + * dropped bucket lock + */ + + if (ca->mi.discard && + blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev))) + blkdev_issue_discard(ca->disk_sb.bdev, + bucket_to_sector(ca, bucket), + ca->mi.bucket_size, GFP_NOIO, 0); + + while (1) { + set_current_state(TASK_INTERRUPTIBLE); + if (bch2_allocator_push(ca, bucket)) + break; + + if (kthread_should_stop()) { + __set_current_state(TASK_RUNNING); + goto out; + } + schedule(); + try_to_freeze(); + } + + __set_current_state(TASK_RUNNING); + } + + down_read(&c->gc_lock); + + /* + * See if we have buckets we can reuse without invalidating them + * or forcing a journal commit: + */ + //bch2_find_empty_buckets(c, ca); + + if (fifo_used(&ca->free_inc) * 2 > ca->free_inc.size) { + up_read(&c->gc_lock); + continue; + } + + /* We've run out of free buckets! */ + + while (!fifo_full(&ca->free_inc)) { + if (wait_buckets_available(ca)) { + up_read(&c->gc_lock); + goto out; + } + + /* + * Find some buckets that we can invalidate, either + * they're completely unused, or only contain clean data + * that's been written back to the backing device or + * another cache tier + */ + + invalidate_buckets(ca); + trace_alloc_batch(ca, fifo_used(&ca->free_inc), + ca->free_inc.size); + } + + up_read(&c->gc_lock); + + /* + * free_inc is full of newly-invalidated buckets, must write out + * prios and gens before they can be re-used + */ + ret = bch2_prio_write(ca); + if (ret) { + /* + * Emergency read only - allocator thread has to + * shutdown. + * + * N.B. we better be going into RO mode, else + * allocations would hang indefinitely - whatever + * generated the error will have sent us into RO mode. + * + * Clear out the free_inc freelist so things are + * consistent-ish: + */ + spin_lock(&ca->freelist_lock); + while (!fifo_empty(&ca->free_inc)) { + long bucket; + + fifo_pop(&ca->free_inc, bucket); + bch2_mark_free_bucket(ca, ca->buckets + bucket); + } + spin_unlock(&ca->freelist_lock); + goto out; + } + } +out: + /* + * Avoid a race with bch2_usage_update() trying to wake us up after + * we've exited: + */ + synchronize_rcu(); + return 0; +} + +/* Allocation */ + +/** + * bch_bucket_alloc - allocate a single bucket from a specific device + * + * Returns index of bucket on success, 0 on failure + * */ +size_t bch2_bucket_alloc(struct bch_dev *ca, enum alloc_reserve reserve) +{ + struct bucket *g; + long r; + + spin_lock(&ca->freelist_lock); + if (fifo_pop(&ca->free[RESERVE_NONE], r) || + fifo_pop(&ca->free[reserve], r)) + goto out; + + spin_unlock(&ca->freelist_lock); + + trace_bucket_alloc_fail(ca, reserve); + return 0; +out: + verify_not_on_freelist(ca, r); + spin_unlock(&ca->freelist_lock); + + trace_bucket_alloc(ca, reserve); + + bch2_wake_allocator(ca); + + g = ca->buckets + r; + + g->read_prio = ca->fs->prio_clock[READ].hand; + g->write_prio = ca->fs->prio_clock[WRITE].hand; + + return r; +} + +static void __bch2_bucket_free(struct bch_dev *ca, struct bucket *g) +{ + bch2_mark_free_bucket(ca, g); + + g->read_prio = ca->fs->prio_clock[READ].hand; + g->write_prio = ca->fs->prio_clock[WRITE].hand; +} + +enum bucket_alloc_ret { + ALLOC_SUCCESS, + NO_DEVICES, /* -EROFS */ + FREELIST_EMPTY, /* Allocator thread not keeping up */ +}; + +static void recalc_alloc_group_weights(struct bch_fs *c, + struct dev_group *devs) +{ + struct bch_dev *ca; + u64 available_buckets = 1; /* avoid a divide by zero... */ + unsigned i; + + for (i = 0; i < devs->nr; i++) { + ca = devs->d[i].dev; + + devs->d[i].weight = dev_buckets_free(ca); + available_buckets += devs->d[i].weight; + } + + for (i = 0; i < devs->nr; i++) { + const unsigned min_weight = U32_MAX >> 4; + const unsigned max_weight = U32_MAX; + + devs->d[i].weight = + min_weight + + div64_u64(devs->d[i].weight * + devs->nr * + (max_weight - min_weight), + available_buckets); + devs->d[i].weight = min_t(u64, devs->d[i].weight, max_weight); + } +} + +static enum bucket_alloc_ret bch2_bucket_alloc_group(struct bch_fs *c, + struct open_bucket *ob, + enum alloc_reserve reserve, + unsigned nr_replicas, + struct dev_group *devs, + long *devs_used) +{ + enum bucket_alloc_ret ret; + unsigned fail_idx = -1, i; + unsigned available = 0; + + BUG_ON(nr_replicas > ARRAY_SIZE(ob->ptrs)); + + if (ob->nr_ptrs >= nr_replicas) + return ALLOC_SUCCESS; + + spin_lock(&devs->lock); + + for (i = 0; i < devs->nr; i++) + available += !test_bit(devs->d[i].dev->dev_idx, + devs_used); + + recalc_alloc_group_weights(c, devs); + + i = devs->cur_device; + + while (ob->nr_ptrs < nr_replicas) { + struct bch_dev *ca; + u64 bucket; + + if (!available) { + ret = NO_DEVICES; + goto err; + } + + i++; + i %= devs->nr; + + ret = FREELIST_EMPTY; + if (i == fail_idx) + goto err; + + ca = devs->d[i].dev; + + if (test_bit(ca->dev_idx, devs_used)) + continue; + + if (fail_idx == -1 && + get_random_int() > devs->d[i].weight) + continue; + + bucket = bch2_bucket_alloc(ca, reserve); + if (!bucket) { + if (fail_idx == -1) + fail_idx = i; + continue; + } + + /* + * open_bucket_add_buckets expects new pointers at the head of + * the list: + */ + memmove(&ob->ptrs[1], + &ob->ptrs[0], + ob->nr_ptrs * sizeof(ob->ptrs[0])); + memmove(&ob->ptr_offset[1], + &ob->ptr_offset[0], + ob->nr_ptrs * sizeof(ob->ptr_offset[0])); + ob->nr_ptrs++; + ob->ptrs[0] = (struct bch_extent_ptr) { + .gen = ca->buckets[bucket].mark.gen, + .offset = bucket_to_sector(ca, bucket), + .dev = ca->dev_idx, + }; + ob->ptr_offset[0] = 0; + + __set_bit(ca->dev_idx, devs_used); + available--; + devs->cur_device = i; + } + + ret = ALLOC_SUCCESS; +err: + EBUG_ON(ret != ALLOC_SUCCESS && reserve == RESERVE_MOVINGGC); + spin_unlock(&devs->lock); + return ret; +} + +static enum bucket_alloc_ret __bch2_bucket_alloc_set(struct bch_fs *c, + struct write_point *wp, + struct open_bucket *ob, + unsigned nr_replicas, + enum alloc_reserve reserve, + long *devs_used) +{ + struct bch_tier *tier; + /* + * this should implement policy - for a given type of allocation, decide + * which devices to allocate from: + * + * XXX: switch off wp->type and do something more intelligent here + */ + if (wp->group) + return bch2_bucket_alloc_group(c, ob, reserve, nr_replicas, + wp->group, devs_used); + + /* foreground writes: prefer fastest tier: */ + tier = READ_ONCE(c->fastest_tier); + if (tier) + bch2_bucket_alloc_group(c, ob, reserve, nr_replicas, + &tier->devs, devs_used); + + return bch2_bucket_alloc_group(c, ob, reserve, nr_replicas, + &c->all_devs, devs_used); +} + +static int bch2_bucket_alloc_set(struct bch_fs *c, struct write_point *wp, + struct open_bucket *ob, unsigned nr_replicas, + enum alloc_reserve reserve, long *devs_used, + struct closure *cl) +{ + bool waiting = false; + + while (1) { + switch (__bch2_bucket_alloc_set(c, wp, ob, nr_replicas, + reserve, devs_used)) { + case ALLOC_SUCCESS: + if (waiting) + closure_wake_up(&c->freelist_wait); + + return 0; + + case NO_DEVICES: + if (waiting) + closure_wake_up(&c->freelist_wait); + return -EROFS; + + case FREELIST_EMPTY: + if (!cl || waiting) + trace_freelist_empty_fail(c, + reserve, cl); + + if (!cl) + return -ENOSPC; + + if (waiting) + return -EAGAIN; + + /* Retry allocation after adding ourself to waitlist: */ + closure_wait(&c->freelist_wait, cl); + waiting = true; + break; + default: + BUG(); + } + } +} + +/* Open buckets: */ + +/* + * Open buckets represent one or more buckets (on multiple devices) that are + * currently being allocated from. They serve two purposes: + * + * - They track buckets that have been partially allocated, allowing for + * sub-bucket sized allocations - they're used by the sector allocator below + * + * - They provide a reference to the buckets they own that mark and sweep GC + * can find, until the new allocation has a pointer to it inserted into the + * btree + * + * When allocating some space with the sector allocator, the allocation comes + * with a reference to an open bucket - the caller is required to put that + * reference _after_ doing the index update that makes its allocation reachable. + */ + +static void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob) +{ + const struct bch_extent_ptr *ptr; + + lockdep_assert_held(&c->open_buckets_lock); + + open_bucket_for_each_ptr(ob, ptr) { + struct bch_dev *ca = c->devs[ptr->dev]; + + bch2_mark_alloc_bucket(ca, PTR_BUCKET(ca, ptr), false); + } + + ob->nr_ptrs = 0; + + list_move(&ob->list, &c->open_buckets_free); + c->open_buckets_nr_free++; + closure_wake_up(&c->open_buckets_wait); +} + +void bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *b) +{ + if (atomic_dec_and_test(&b->pin)) { + spin_lock(&c->open_buckets_lock); + __bch2_open_bucket_put(c, b); + spin_unlock(&c->open_buckets_lock); + } +} + +static struct open_bucket *bch2_open_bucket_get(struct bch_fs *c, + unsigned nr_reserved, + struct closure *cl) +{ + struct open_bucket *ret; + + spin_lock(&c->open_buckets_lock); + + if (c->open_buckets_nr_free > nr_reserved) { + BUG_ON(list_empty(&c->open_buckets_free)); + ret = list_first_entry(&c->open_buckets_free, + struct open_bucket, list); + list_move(&ret->list, &c->open_buckets_open); + BUG_ON(ret->nr_ptrs); + + atomic_set(&ret->pin, 1); /* XXX */ + ret->has_full_ptrs = false; + + c->open_buckets_nr_free--; + trace_open_bucket_alloc(c, cl); + } else { + trace_open_bucket_alloc_fail(c, cl); + + if (cl) { + closure_wait(&c->open_buckets_wait, cl); + ret = ERR_PTR(-EAGAIN); + } else + ret = ERR_PTR(-ENOSPC); + } + + spin_unlock(&c->open_buckets_lock); + + return ret; +} + +static unsigned ob_ptr_sectors_free(struct bch_fs *c, + struct open_bucket *ob, + struct bch_extent_ptr *ptr) +{ + struct bch_dev *ca = c->devs[ptr->dev]; + unsigned i = ptr - ob->ptrs; + unsigned bucket_size = ca->mi.bucket_size; + unsigned used = (ptr->offset & (bucket_size - 1)) + + ob->ptr_offset[i]; + + BUG_ON(used > bucket_size); + + return bucket_size - used; +} + +static unsigned open_bucket_sectors_free(struct bch_fs *c, + struct open_bucket *ob, + unsigned nr_replicas) +{ + unsigned i, sectors_free = UINT_MAX; + + for (i = 0; i < min(nr_replicas, ob->nr_ptrs); i++) + sectors_free = min(sectors_free, + ob_ptr_sectors_free(c, ob, &ob->ptrs[i])); + + return sectors_free != UINT_MAX ? sectors_free : 0; +} + +static void open_bucket_copy_unused_ptrs(struct bch_fs *c, + struct open_bucket *new, + struct open_bucket *old) +{ + unsigned i; + + for (i = 0; i < old->nr_ptrs; i++) + if (ob_ptr_sectors_free(c, old, &old->ptrs[i])) { + struct bch_extent_ptr tmp = old->ptrs[i]; + + tmp.offset += old->ptr_offset[i]; + new->ptrs[new->nr_ptrs] = tmp; + new->ptr_offset[new->nr_ptrs] = 0; + new->nr_ptrs++; + } +} + +static void verify_not_stale(struct bch_fs *c, const struct open_bucket *ob) +{ +#ifdef CONFIG_BCACHEFS_DEBUG + const struct bch_extent_ptr *ptr; + + open_bucket_for_each_ptr(ob, ptr) { + struct bch_dev *ca = c->devs[ptr->dev]; + + BUG_ON(ptr_stale(ca, ptr)); + } +#endif +} + +/* Sector allocator */ + +static struct open_bucket *lock_writepoint(struct bch_fs *c, + struct write_point *wp) +{ + struct open_bucket *ob; + + while ((ob = ACCESS_ONCE(wp->b))) { + mutex_lock(&ob->lock); + if (wp->b == ob) + break; + + mutex_unlock(&ob->lock); + } + + return ob; +} + +static int open_bucket_add_buckets(struct bch_fs *c, + struct write_point *wp, + struct open_bucket *ob, + unsigned nr_replicas, + unsigned nr_replicas_required, + enum alloc_reserve reserve, + struct closure *cl) +{ + long devs_used[BITS_TO_LONGS(BCH_SB_MEMBERS_MAX)]; + unsigned i; + int ret; + + /* + * We might be allocating pointers to add to an existing extent + * (tiering/copygc/migration) - if so, some of the pointers in our + * existing open bucket might duplicate devices we already have. This is + * moderately annoying. + */ + + /* Short circuit all the fun stuff if posssible: */ + if (ob->nr_ptrs >= nr_replicas) + return 0; + + memset(devs_used, 0, sizeof(devs_used)); + + for (i = 0; i < ob->nr_ptrs; i++) + __set_bit(ob->ptrs[i].dev, devs_used); + + ret = bch2_bucket_alloc_set(c, wp, ob, nr_replicas, + reserve, devs_used, cl); + + if (ret == -EROFS && + ob->nr_ptrs >= nr_replicas_required) + ret = 0; + + return ret; +} + +/* + * Get us an open_bucket we can allocate from, return with it locked: + */ +struct open_bucket *bch2_alloc_sectors_start(struct bch_fs *c, + struct write_point *wp, + unsigned nr_replicas, + unsigned nr_replicas_required, + enum alloc_reserve reserve, + struct closure *cl) +{ + struct open_bucket *ob; + unsigned open_buckets_reserved = wp == &c->btree_write_point + ? 0 : BTREE_NODE_RESERVE; + int ret; + + BUG_ON(!reserve); + BUG_ON(!nr_replicas); +retry: + ob = lock_writepoint(c, wp); + + /* + * If ob->sectors_free == 0, one or more of the buckets ob points to is + * full. We can't drop pointers from an open bucket - garbage collection + * still needs to find them; instead, we must allocate a new open bucket + * and copy any pointers to non-full buckets into the new open bucket. + */ + if (!ob || ob->has_full_ptrs) { + struct open_bucket *new_ob; + + new_ob = bch2_open_bucket_get(c, open_buckets_reserved, cl); + if (IS_ERR(new_ob)) + return new_ob; + + mutex_lock(&new_ob->lock); + + /* + * We point the write point at the open_bucket before doing the + * allocation to avoid a race with shutdown: + */ + if (race_fault() || + cmpxchg(&wp->b, ob, new_ob) != ob) { + /* We raced: */ + mutex_unlock(&new_ob->lock); + bch2_open_bucket_put(c, new_ob); + + if (ob) + mutex_unlock(&ob->lock); + goto retry; + } + + if (ob) { + open_bucket_copy_unused_ptrs(c, new_ob, ob); + mutex_unlock(&ob->lock); + bch2_open_bucket_put(c, ob); + } + + ob = new_ob; + } + + ret = open_bucket_add_buckets(c, wp, ob, nr_replicas, + nr_replicas_required, + reserve, cl); + if (ret) { + mutex_unlock(&ob->lock); + return ERR_PTR(ret); + } + + ob->sectors_free = open_bucket_sectors_free(c, ob, nr_replicas); + + BUG_ON(!ob->sectors_free); + verify_not_stale(c, ob); + + return ob; +} + +/* + * Append pointers to the space we just allocated to @k, and mark @sectors space + * as allocated out of @ob + */ +void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct bkey_i_extent *e, + unsigned nr_replicas, struct open_bucket *ob, + unsigned sectors) +{ + struct bch_extent_ptr tmp; + bool has_data = false; + unsigned i; + + /* + * We're keeping any existing pointer k has, and appending new pointers: + * __bch2_write() will only write to the pointers we add here: + */ + + BUG_ON(sectors > ob->sectors_free); + + /* didn't use all the ptrs: */ + if (nr_replicas < ob->nr_ptrs) + has_data = true; + + for (i = 0; i < min(ob->nr_ptrs, nr_replicas); i++) { + EBUG_ON(bch2_extent_has_device(extent_i_to_s_c(e), ob->ptrs[i].dev)); + + tmp = ob->ptrs[i]; + tmp.cached = bkey_extent_is_cached(&e->k); + tmp.offset += ob->ptr_offset[i]; + extent_ptr_append(e, tmp); + + ob->ptr_offset[i] += sectors; + + this_cpu_add(*c->devs[tmp.dev]->sectors_written, sectors); + } +} + +/* + * Append pointers to the space we just allocated to @k, and mark @sectors space + * as allocated out of @ob + */ +void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp, + struct open_bucket *ob) +{ + bool has_data = false; + unsigned i; + + for (i = 0; i < ob->nr_ptrs; i++) { + if (!ob_ptr_sectors_free(c, ob, &ob->ptrs[i])) + ob->has_full_ptrs = true; + else + has_data = true; + } + + if (likely(has_data)) + atomic_inc(&ob->pin); + else + BUG_ON(xchg(&wp->b, NULL) != ob); + + mutex_unlock(&ob->lock); +} + +/* + * Allocates some space in the cache to write to, and k to point to the newly + * allocated space, and updates k->size and k->offset (to point to the + * end of the newly allocated space). + * + * May allocate fewer sectors than @sectors, k->size indicates how many + * sectors were actually allocated. + * + * Return codes: + * - -EAGAIN: closure was added to waitlist + * - -ENOSPC: out of space and no closure provided + * + * @c - filesystem. + * @wp - write point to use for allocating sectors. + * @k - key to return the allocated space information. + * @cl - closure to wait for a bucket + */ +struct open_bucket *bch2_alloc_sectors(struct bch_fs *c, + struct write_point *wp, + struct bkey_i_extent *e, + unsigned nr_replicas, + unsigned nr_replicas_required, + enum alloc_reserve reserve, + struct closure *cl) +{ + struct open_bucket *ob; + + ob = bch2_alloc_sectors_start(c, wp, nr_replicas, + nr_replicas_required, + reserve, cl); + if (IS_ERR_OR_NULL(ob)) + return ob; + + if (e->k.size > ob->sectors_free) + bch2_key_resize(&e->k, ob->sectors_free); + + bch2_alloc_sectors_append_ptrs(c, e, nr_replicas, ob, e->k.size); + + bch2_alloc_sectors_done(c, wp, ob); + + return ob; +} + +/* Startup/shutdown (ro/rw): */ + +void bch2_recalc_capacity(struct bch_fs *c) +{ + struct bch_tier *fastest_tier = NULL, *slowest_tier = NULL, *tier; + struct bch_dev *ca; + u64 total_capacity, capacity = 0, reserved_sectors = 0; + unsigned long ra_pages = 0; + unsigned i, j; + + for_each_online_member(ca, c, i) { + struct backing_dev_info *bdi = + blk_get_backing_dev_info(ca->disk_sb.bdev); + + ra_pages += bdi->ra_pages; + } + + c->bdi.ra_pages = ra_pages; + + /* Find fastest, slowest tiers with devices: */ + + for (tier = c->tiers; + tier < c->tiers + ARRAY_SIZE(c->tiers); tier++) { + if (!tier->devs.nr) + continue; + if (!fastest_tier) + fastest_tier = tier; + slowest_tier = tier; + } + + c->fastest_tier = fastest_tier != slowest_tier ? fastest_tier : NULL; + + c->promote_write_point.group = &fastest_tier->devs; + + if (!fastest_tier) + goto set_capacity; + + /* + * Capacity of the filesystem is the capacity of all the devices in the + * slowest (highest) tier - we don't include lower tier devices. + */ + spin_lock(&slowest_tier->devs.lock); + group_for_each_dev(ca, &slowest_tier->devs, i) { + size_t reserve = 0; + + /* + * We need to reserve buckets (from the number + * of currently available buckets) against + * foreground writes so that mainly copygc can + * make forward progress. + * + * We need enough to refill the various reserves + * from scratch - copygc will use its entire + * reserve all at once, then run against when + * its reserve is refilled (from the formerly + * available buckets). + * + * This reserve is just used when considering if + * allocations for foreground writes must wait - + * not -ENOSPC calculations. + */ + for (j = 0; j < RESERVE_NONE; j++) + reserve += ca->free[j].size; + + reserve += ca->free_inc.size; + + reserve += ARRAY_SIZE(c->write_points); + + if (ca->mi.tier) + reserve += 1; /* tiering write point */ + reserve += 1; /* btree write point */ + + reserved_sectors += reserve << ca->bucket_bits; + + capacity += (ca->mi.nbuckets - + ca->mi.first_bucket) << + ca->bucket_bits; + } + spin_unlock(&slowest_tier->devs.lock); +set_capacity: + total_capacity = capacity; + + capacity *= (100 - c->opts.gc_reserve_percent); + capacity = div64_u64(capacity, 100); + + BUG_ON(capacity + reserved_sectors > total_capacity); + + c->capacity = capacity; + + if (c->capacity) { + bch2_io_timer_add(&c->io_clock[READ], + &c->prio_clock[READ].rescale); + bch2_io_timer_add(&c->io_clock[WRITE], + &c->prio_clock[WRITE].rescale); + } else { + bch2_io_timer_del(&c->io_clock[READ], + &c->prio_clock[READ].rescale); + bch2_io_timer_del(&c->io_clock[WRITE], + &c->prio_clock[WRITE].rescale); + } + + /* Wake up case someone was waiting for buckets */ + closure_wake_up(&c->freelist_wait); +} + +static void bch2_stop_write_point(struct bch_dev *ca, + struct write_point *wp) +{ + struct bch_fs *c = ca->fs; + struct open_bucket *ob; + struct bch_extent_ptr *ptr; + + ob = lock_writepoint(c, wp); + if (!ob) + return; + + for (ptr = ob->ptrs; ptr < ob->ptrs + ob->nr_ptrs; ptr++) + if (ptr->dev == ca->dev_idx) + goto found; + + mutex_unlock(&ob->lock); + return; +found: + BUG_ON(xchg(&wp->b, NULL) != ob); + mutex_unlock(&ob->lock); + + /* Drop writepoint's ref: */ + bch2_open_bucket_put(c, ob); +} + +static bool bch2_dev_has_open_write_point(struct bch_dev *ca) +{ + struct bch_fs *c = ca->fs; + struct bch_extent_ptr *ptr; + struct open_bucket *ob; + + for (ob = c->open_buckets; + ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); + ob++) + if (atomic_read(&ob->pin)) { + mutex_lock(&ob->lock); + for (ptr = ob->ptrs; ptr < ob->ptrs + ob->nr_ptrs; ptr++) + if (ptr->dev == ca->dev_idx) { + mutex_unlock(&ob->lock); + return true; + } + mutex_unlock(&ob->lock); + } + + return false; +} + +/* device goes ro: */ +void bch2_dev_allocator_stop(struct bch_dev *ca) +{ + struct bch_fs *c = ca->fs; + struct dev_group *tier = &c->tiers[ca->mi.tier].devs; + struct task_struct *p; + struct closure cl; + unsigned i; + + closure_init_stack(&cl); + + /* First, remove device from allocation groups: */ + + bch2_dev_group_remove(tier, ca); + bch2_dev_group_remove(&c->all_devs, ca); + + bch2_recalc_capacity(c); + + /* + * Stopping the allocator thread comes after removing from allocation + * groups, else pending allocations will hang: + */ + + p = ca->alloc_thread; + ca->alloc_thread = NULL; + smp_wmb(); + + /* + * We need an rcu barrier between setting ca->alloc_thread = NULL and + * the thread shutting down to avoid a race with bch2_usage_update() - + * the allocator thread itself does a synchronize_rcu() on exit. + * + * XXX: it would be better to have the rcu barrier be asynchronous + * instead of blocking us here + */ + if (p) { + kthread_stop(p); + put_task_struct(p); + } + + /* Next, close write points that point to this device... */ + + for (i = 0; i < ARRAY_SIZE(c->write_points); i++) + bch2_stop_write_point(ca, &c->write_points[i]); + + bch2_stop_write_point(ca, &ca->copygc_write_point); + bch2_stop_write_point(ca, &c->promote_write_point); + bch2_stop_write_point(ca, &ca->tiering_write_point); + bch2_stop_write_point(ca, &c->migration_write_point); + bch2_stop_write_point(ca, &c->btree_write_point); + + mutex_lock(&c->btree_reserve_cache_lock); + while (c->btree_reserve_cache_nr) { + struct btree_alloc *a = + &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; + + bch2_open_bucket_put(c, a->ob); + } + mutex_unlock(&c->btree_reserve_cache_lock); + + /* Avoid deadlocks.. */ + + closure_wake_up(&c->freelist_wait); + wake_up(&c->journal.wait); + + /* Now wait for any in flight writes: */ + + while (1) { + closure_wait(&c->open_buckets_wait, &cl); + + if (!bch2_dev_has_open_write_point(ca)) { + closure_wake_up(&c->open_buckets_wait); + break; + } + + closure_sync(&cl); + } +} + +/* + * Startup the allocator thread for transition to RW mode: + */ +int bch2_dev_allocator_start(struct bch_dev *ca) +{ + struct bch_fs *c = ca->fs; + struct dev_group *tier = &c->tiers[ca->mi.tier].devs; + struct bch_sb_field_journal *journal_buckets; + bool has_journal; + struct task_struct *k; + + /* + * allocator thread already started? + */ + if (ca->alloc_thread) + return 0; + + k = kthread_create(bch2_allocator_thread, ca, "bcache_allocator"); + if (IS_ERR(k)) + return 0; + + get_task_struct(k); + ca->alloc_thread = k; + + bch2_dev_group_add(tier, ca); + bch2_dev_group_add(&c->all_devs, ca); + + mutex_lock(&c->sb_lock); + journal_buckets = bch2_sb_get_journal(ca->disk_sb.sb); + has_journal = bch2_nr_journal_buckets(journal_buckets) >= + BCH_JOURNAL_BUCKETS_MIN; + mutex_unlock(&c->sb_lock); + + if (has_journal) + bch2_dev_group_add(&c->journal.devs, ca); + + bch2_recalc_capacity(c); + + /* + * Don't wake up allocator thread until after adding device to + * allocator groups - otherwise, alloc thread could get a spurious + * -EROFS due to prio_write() -> journal_meta() not finding any devices: + */ + wake_up_process(k); + return 0; +} + +void bch2_fs_allocator_init(struct bch_fs *c) +{ + unsigned i; + + INIT_LIST_HEAD(&c->open_buckets_open); + INIT_LIST_HEAD(&c->open_buckets_free); + spin_lock_init(&c->open_buckets_lock); + bch2_prio_timer_init(c, READ); + bch2_prio_timer_init(c, WRITE); + + /* open bucket 0 is a sentinal NULL: */ + mutex_init(&c->open_buckets[0].lock); + INIT_LIST_HEAD(&c->open_buckets[0].list); + + for (i = 1; i < ARRAY_SIZE(c->open_buckets); i++) { + mutex_init(&c->open_buckets[i].lock); + c->open_buckets_nr_free++; + list_add(&c->open_buckets[i].list, &c->open_buckets_free); + } + + spin_lock_init(&c->all_devs.lock); + + for (i = 0; i < ARRAY_SIZE(c->tiers); i++) + spin_lock_init(&c->tiers[i].devs.lock); + + for (i = 0; i < ARRAY_SIZE(c->write_points); i++) + c->write_points[i].throttle = true; + + c->pd_controllers_update_seconds = 5; + INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update); + + spin_lock_init(&c->foreground_write_pd_lock); + bch2_pd_controller_init(&c->foreground_write_pd); + /* + * We do not want the write rate to have an effect on the computed + * rate, for two reasons: + * + * We do not call bch2_ratelimit_delay() at all if the write rate + * exceeds 1GB/s. In this case, the PD controller will think we are + * not "keeping up" and not change the rate. + */ + c->foreground_write_pd.backpressure = 0; + init_timer(&c->foreground_write_wakeup); + + c->foreground_write_wakeup.data = (unsigned long) c; + c->foreground_write_wakeup.function = bch2_wake_delayed_writes; +} |