summaryrefslogtreecommitdiff
path: root/fs/xfs/scrub/repair.c
blob: 740d86ec2555515071f5fabdc7ba9f56e994388b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2018 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_log.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount_btree.h"
#include "xfs_extent_busy.h"
#include "xfs_ag_resv.h"
#include "xfs_quota.h"
#include "xfs_bmap.h"
#include "xfs_defer.h"
#include "xfs_extfree_item.h"
#include "xfs_reflink.h"
#include "xfs_health.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_dir2.h"
#include "xfs_attr.h"
#include "xfs_swapext.h"
#include "xfs_xchgrange.h"
#include "xfs_icache.h"
#include "xfs_rtrmap_btree.h"
#include "xfs_rtalloc.h"
#include "xfs_rtrefcount_btree.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/xfile.h"
#include <linux/namei.h>

/*
 * Attempt to repair some metadata, if the metadata is corrupt and userspace
 * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
 * and will set *fixed to true if it thinks it repaired anything.
 */
int
xrep_attempt(
	struct xfs_scrub	*sc)
{
	int			error = 0;

	trace_xrep_attempt(XFS_I(file_inode(sc->filp)), sc->sm, error);

	xchk_ag_btcur_free(&sc->sa);
	xchk_rt_btcur_free(&sc->sr);

	/* Repair whatever's broken. */
	ASSERT(sc->ops->repair);
	error = sc->ops->repair(sc);
	trace_xrep_done(XFS_I(file_inode(sc->filp)), sc->sm, error);
	switch (error) {
	case 0:
		/*
		 * Repair succeeded.  Commit the fixes and perform a second
		 * scrub so that we can tell userspace if we fixed the problem.
		 */
		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
		sc->flags |= XREP_ALREADY_FIXED;
		return -EAGAIN;
	case -EDEADLOCK:
	case -EAGAIN:
		/* Tell the caller to try again having grabbed all the locks. */
		if (!(sc->flags & XCHK_TRY_HARDER)) {
			sc->flags |= XCHK_TRY_HARDER;
			return -EAGAIN;
		}
		/*
		 * We tried harder but still couldn't grab all the resources
		 * we needed to fix it.  The corruption has not been fixed,
		 * so report back to userspace.
		 */
		return -EFSCORRUPTED;
	default:
		return error;
	}
}

/*
 * Complain about unfixable problems in the filesystem.  We don't log
 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
 * administrator isn't running xfs_scrub in no-repairs mode.
 *
 * Use this helper function because _ratelimited silently declares a static
 * structure to track rate limiting information.
 */
void
xrep_failure(
	struct xfs_mount	*mp)
{
	xfs_alert_ratelimited(mp,
"Corruption not fixed during online repair.  Unmount and run xfs_repair.");
}

/*
 * Repair probe -- userspace uses this to probe if we're willing to repair a
 * given mountpoint.
 */
int
xrep_probe(
	struct xfs_scrub	*sc)
{
	int			error = 0;

	if (xchk_should_terminate(sc, &error))
		return error;

	return 0;
}

/*
 * Roll a transaction, keeping the AG headers locked and reinitializing
 * the btree cursors.
 */
int
xrep_roll_ag_trans(
	struct xfs_scrub	*sc)
{
	int			error;

	/* Keep the AG header buffers locked so we can keep going. */
	if (sc->sa.agi_bp)
		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
	if (sc->sa.agf_bp)
		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
	if (sc->sa.agfl_bp)
		xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);

	/*
	 * Roll the transaction.  We still own the buffer and the buffer lock
	 * regardless of whether or not the roll succeeds.  If the roll fails,
	 * the buffers will be released during teardown on our way out of the
	 * kernel.  If it succeeds, we join them to the new transaction and
	 * move on.
	 */
	error = xfs_trans_roll(&sc->tp);
	if (error)
		return error;

	/* Join AG headers to the new transaction. */
	if (sc->sa.agi_bp)
		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
	if (sc->sa.agf_bp)
		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
	if (sc->sa.agfl_bp)
		xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);

	return 0;
}

/* Roll the scrub transaction, holding the primary metadata locked. */
int
xrep_roll_trans(
	struct xfs_scrub	*sc)
{
	int			error;

	if (!sc->ip)
		return xrep_roll_ag_trans(sc);

	/*
	 * Roll the transaction with the inode we're fixing and the temp inode,
	 * so that neither can pin the log.
	 */
	if (sc->tempip)
		xfs_trans_log_inode(sc->tp, sc->tempip, XFS_ILOG_CORE);
	error = xfs_trans_roll_inode(&sc->tp, sc->ip);
	if (sc->tempip)
		xfs_trans_ijoin(sc->tp, sc->tempip, 0);
	return error;
}

/*
 * Does the given AG have enough space to rebuild a btree?  Neither AG
 * reservation can be critical, and we must have enough space (factoring
 * in AG reservations) to construct a whole btree.
 */
bool
xrep_ag_has_space(
	struct xfs_perag	*pag,
	xfs_extlen_t		nr_blocks,
	enum xfs_ag_resv_type	type)
{
	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
}

/*
 * Figure out how many blocks to reserve for an AG repair.  We calculate the
 * worst case estimate for the number of blocks we'd need to rebuild one of
 * any type of per-AG btree.
 */
xfs_extlen_t
xrep_calc_ag_resblks(
	struct xfs_scrub		*sc)
{
	struct xfs_mount		*mp = sc->mp;
	struct xfs_scrub_metadata	*sm = sc->sm;
	struct xfs_perag		*pag;
	struct xfs_buf			*bp;
	xfs_agino_t			icount = NULLAGINO;
	xfs_extlen_t			aglen = NULLAGBLOCK;
	xfs_extlen_t			usedlen;
	xfs_extlen_t			freelen;
	xfs_extlen_t			bnobt_sz;
	xfs_extlen_t			inobt_sz;
	xfs_extlen_t			rmapbt_sz;
	xfs_extlen_t			refcbt_sz;
	int				error;

	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
		return 0;

	pag = xfs_perag_get(mp, sm->sm_agno);
	if (pag->pagi_init) {
		/* Use in-core icount if possible. */
		icount = pag->pagi_count;
	} else {
		/* Try to get the actual counters from disk. */
		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
		if (!error) {
			icount = pag->pagi_count;
			xfs_buf_relse(bp);
		}
	}

	/* Now grab the block counters from the AGF. */
	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
	if (error) {
		aglen = xfs_ag_block_count(mp, sm->sm_agno);
		freelen = aglen;
		usedlen = aglen;
	} else {
		struct xfs_agf	*agf = bp->b_addr;

		aglen = be32_to_cpu(agf->agf_length);
		freelen = be32_to_cpu(agf->agf_freeblks);
		usedlen = aglen - freelen;
		xfs_buf_relse(bp);
	}
	xfs_perag_put(pag);

	/* If the icount is impossible, make some worst-case assumptions. */
	if (icount == NULLAGINO ||
	    !xfs_verify_agino(mp, sm->sm_agno, icount)) {
		xfs_agino_t	first, last;

		xfs_agino_range(mp, sm->sm_agno, &first, &last);
		icount = last - first + 1;
	}

	/* If the block counts are impossible, make worst-case assumptions. */
	if (aglen == NULLAGBLOCK ||
	    aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
	    freelen >= aglen) {
		aglen = xfs_ag_block_count(mp, sm->sm_agno);
		freelen = aglen;
		usedlen = aglen;
	}

	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
			freelen, usedlen);

	/*
	 * Figure out how many blocks we'd need worst case to rebuild
	 * each type of btree.  Note that we can only rebuild the
	 * bnobt/cntbt or inobt/finobt as pairs.
	 */
	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_HOLEMASK_BIT);
	else
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_CHUNK);
	if (xfs_sb_version_hasfinobt(&mp->m_sb))
		inobt_sz *= 2;
	if (xfs_sb_version_hasreflink(&mp->m_sb))
		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
	else
		refcbt_sz = 0;
	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
		/*
		 * Guess how many blocks we need to rebuild the rmapbt.
		 * For non-reflink filesystems we can't have more records than
		 * used blocks.  However, with reflink it's possible to have
		 * more than one rmap record per AG block.  We don't know how
		 * many rmaps there could be in the AG, so we start off with
		 * what we hope is an generous over-estimation.
		 */
		if (xfs_sb_version_hasreflink(&mp->m_sb))
			rmapbt_sz = xfs_rmapbt_calc_size(mp,
					(unsigned long long)aglen * 2);
		else
			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
	} else {
		rmapbt_sz = 0;
	}

	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
			inobt_sz, rmapbt_sz, refcbt_sz);

	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
}

/* Allocate a block in an AG. */
int
xrep_alloc_ag_block(
	struct xfs_scrub		*sc,
	const struct xfs_owner_info	*oinfo,
	xfs_fsblock_t			*fsbno,
	enum xfs_ag_resv_type		resv)
{
	struct xfs_alloc_arg		args = {0};
	xfs_agblock_t			bno;
	int				error;

	switch (resv) {
	case XFS_AG_RESV_AGFL:
	case XFS_AG_RESV_RMAPBT:
		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
		if (error)
			return error;
		if (bno == NULLAGBLOCK)
			return -ENOSPC;
		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
				1, false);
		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
		if (resv == XFS_AG_RESV_RMAPBT)
			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
		return 0;
	default:
		break;
	}

	args.tp = sc->tp;
	args.mp = sc->mp;
	args.oinfo = *oinfo;
	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
	args.minlen = 1;
	args.maxlen = 1;
	args.prod = 1;
	args.type = XFS_ALLOCTYPE_THIS_AG;
	args.resv = resv;

	error = xfs_alloc_vextent(&args);
	if (error)
		return error;
	if (args.fsbno == NULLFSBLOCK)
		return -ENOSPC;
	ASSERT(args.len == 1);
	*fsbno = args.fsbno;

	return 0;
}

/* Initialize a new AG btree root block with zero entries. */
int
xrep_init_btblock(
	struct xfs_scrub		*sc,
	xfs_fsblock_t			fsb,
	struct xfs_buf			**bpp,
	xfs_btnum_t			btnum,
	const struct xfs_buf_ops	*ops)
{
	struct xfs_trans		*tp = sc->tp;
	struct xfs_mount		*mp = sc->mp;
	struct xfs_buf			*bp;
	int				error;

	trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
			XFS_FSB_TO_AGBNO(mp, fsb), btnum);

	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
	error = xfs_trans_get_buf(tp, mp->m_ddev_targp,
			XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0,
			&bp);
	if (error)
		return error;
	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno);
	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
	xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
	bp->b_ops = ops;
	*bpp = bp;

	return 0;
}

/* Initialize accounting resources for staging a new AG btree. */
void
xrep_newbt_init_ag(
	struct xrep_newbt		*xnr,
	struct xfs_scrub		*sc,
	const struct xfs_owner_info	*oinfo,
	xfs_fsblock_t			alloc_hint,
	enum xfs_ag_resv_type		resv)
{
	memset(xnr, 0, sizeof(struct xrep_newbt));
	xnr->sc = sc;
	xnr->oinfo = *oinfo; /* structure copy */
	xnr->alloc_hint = alloc_hint;
	xnr->resv = resv;
	INIT_LIST_HEAD(&xnr->resv_list);
}

/* Initialize accounting resources for staging a new inode fork btree. */
void
xrep_newbt_init_inode(
	struct xrep_newbt		*xnr,
	struct xfs_scrub		*sc,
	int				whichfork,
	const struct xfs_owner_info	*oinfo)
{
	xrep_newbt_init_ag(xnr, sc, oinfo,
			XFS_INO_TO_FSB(sc->mp, sc->ip->i_ino),
			XFS_AG_RESV_NONE);
	xnr->ifake.if_fork = kmem_cache_zalloc(xfs_ifork_zone,
			GFP_NOFS | __GFP_NOFAIL);
	xnr->ifake.if_fork_size = XFS_IFORK_SIZE(sc->ip, whichfork);
}

/*
 * Initialize accounting resources for staging a new btree.  Callers are
 * expected to add their own reservations (and clean them up) manually.
 */
void
xrep_newbt_init_bare(
	struct xrep_newbt		*xnr,
	struct xfs_scrub		*sc)
{
	xrep_newbt_init_ag(xnr, sc, &XFS_RMAP_OINFO_ANY_OWNER, NULLFSBLOCK,
			XFS_AG_RESV_NONE);
}

/*
 * Set up automatic reaping of the blocks reserved for btree reconstruction in
 * case we crash by logging a deferred free item for each extent we allocate so
 * that we can get all of the space back if we crash before we can commit the
 * new btree.  This function returns a token that can be used to cancel
 * automatic reaping if repair is successful.
 */
static void
xrep_newbt_schedule_reap(
	struct xrep_newbt		*xnr,
	struct xrep_newbt_resv		*resv)
{
	struct xfs_extent_free_item	efi_item = {
		.xefi_startblock	= resv->fsbno,
		.xefi_blockcount	= resv->len,
		.xefi_oinfo		= xnr->oinfo, /* struct copy */
		.xefi_skip_discard	= true,
	};
	LIST_HEAD(items);

	INIT_LIST_HEAD(&efi_item.xefi_list);
	list_add(&efi_item.xefi_list, &items);
	resv->efi = xfs_extent_free_defer_type.create_intent(xnr->sc->tp,
			&items, 1, false);
}

/* Designate specific blocks to be used to build our new btree. */
static int
__xrep_newbt_add_blocks(
	struct xrep_newbt		*xnr,
	xfs_fsblock_t			fsbno,
	xfs_extlen_t			len,
	bool				auto_reap)
{
	struct xrep_newbt_resv		*resv;

	resv = kmem_alloc(sizeof(struct xrep_newbt_resv), KM_MAYFAIL);
	if (!resv)
		return -ENOMEM;

	INIT_LIST_HEAD(&resv->list);
	resv->fsbno = fsbno;
	resv->len = len;
	resv->used = 0;
	if (auto_reap)
		xrep_newbt_schedule_reap(xnr, resv);
	list_add_tail(&resv->list, &xnr->resv_list);
	return 0;
}

/*
 * Allow certain callers to add disk space directly to the reservation.
 * Callers are responsible for cleaning up the reservations.
 */
int
xrep_newbt_add_blocks(
	struct xrep_newbt		*xnr,
	xfs_fsblock_t			fsbno,
	xfs_extlen_t			len)
{
	return __xrep_newbt_add_blocks(xnr, fsbno, len, false);
}

/* Allocate disk space for our new btree. */
int
xrep_newbt_alloc_blocks(
	struct xrep_newbt	*xnr,
	uint64_t		nr_blocks)
{
	struct xfs_scrub	*sc = xnr->sc;
	xfs_alloctype_t		type;
	xfs_fsblock_t		alloc_hint = xnr->alloc_hint;
	int			error = 0;

	/*
	 * Inode-rooted btrees can allocate from any AG, whereas AG btrees
	 * require a specific AG mentioned in the alloc hint..
	 */
	type = sc->ip ? XFS_ALLOCTYPE_START_BNO : XFS_ALLOCTYPE_NEAR_BNO;

	while (nr_blocks > 0) {
		struct xfs_alloc_arg	args = {
			.tp		= sc->tp,
			.mp		= sc->mp,
			.type		= type,
			.fsbno		= alloc_hint,
			.oinfo		= xnr->oinfo,
			.minlen		= 1,
			.maxlen		= nr_blocks,
			.prod		= 1,
			.resv		= xnr->resv,
		};

		/*
		 * If we don't want an rmap update on the allocation, we need
		 * to fix the freelist with the NORMAP flag set so that we
		 * don't also try to create an rmap for new AGFL blocks.  This
		 * should only ever be used by the rmap repair function.
		 */
		if (xfs_rmap_should_skip_owner_update(&xnr->oinfo)) {
			error = xrep_fix_freelist(sc, XFS_ALLOC_FLAG_NORMAP);
			if (error)
				return error;
		}

		error = xfs_alloc_vextent(&args);
		if (error)
			return error;
		if (args.fsbno == NULLFSBLOCK)
			return -ENOSPC;

		trace_xrep_newbt_alloc_blocks(sc->mp,
				XFS_FSB_TO_AGNO(sc->mp, args.fsbno),
				XFS_FSB_TO_AGBNO(sc->mp, args.fsbno),
				args.len, xnr->oinfo.oi_owner);

		error = __xrep_newbt_add_blocks(xnr, args.fsbno, args.len,
				true);
		if (error)
			return error;

		nr_blocks -= args.len;
		alloc_hint = args.fsbno + args.len - 1;

		error = xrep_roll_trans(sc);
		if (error)
			return error;
	}

	return 0;
}

/*
 * Relog the EFIs attached to a staging btree so that we don't pin the log
 * tail.  Same logic as xfs_defer_relog.
 */
int
xrep_newbt_relog_efis(
	struct xrep_newbt	*xnr)
{
	struct xrep_newbt_resv	*resv;
	struct xfs_trans	*tp = xnr->sc->tp;

	list_for_each_entry(resv, &xnr->resv_list, list) {
		/*
		 * If the log intent item for this deferred op is in a
		 * different checkpoint, relog it to keep the log tail moving
		 * forward.  We're ok with this being racy because an incorrect
		 * decision means we'll be a little slower at pushing the tail.
		 */
		if (!resv->efi || xfs_log_item_in_current_chkpt(resv->efi))
			continue;

		resv->efi = xfs_trans_item_relog(resv->efi, tp);
	}

	if (tp->t_flags & XFS_TRANS_DIRTY)
		return xrep_roll_trans(xnr->sc);
	return 0;
}

/*
 * Release blocks that were reserved for a btree repair.  If the repair
 * succeeded then we log deferred frees for unused blocks.  Otherwise, we try
 * to free the extents immediately to roll the filesystem back to where it was
 * before we started.
 */
static inline int
xrep_newbt_destroy_reservation(
	struct xrep_newbt	*xnr,
	struct xrep_newbt_resv	*resv,
	bool			cancel_repair)
{
	struct xfs_scrub	*sc = xnr->sc;
	struct xfs_log_item	*lip;

	/*
	 * Earlier, we logged EFIs for the extents that we allocated to hold
	 * the new btree so that we could automatically roll back those
	 * allocations if the system crashed.  Now we log an EFD to cancel the
	 * EFI, either because the repair succeeded and the new blocks are in
	 * use; or because the repair was cancelled and we're about to free
	 * the extents directly.
	 */
	lip = xfs_extent_free_defer_type.create_done(sc->tp, resv->efi, 0);
	set_bit(XFS_LI_DIRTY, &lip->li_flags);

	if (cancel_repair) {
		int		error;

		/* Free the extent then roll the transaction. */
		error = xfs_free_extent(sc->tp, resv->fsbno, resv->len,
				&xnr->oinfo, xnr->resv);
		if (error)
			return error;

		return xrep_roll_trans(sc);
	}

	/*
	 * Use the deferred freeing mechanism to schedule for deletion any
	 * blocks we didn't use to rebuild the tree.  This enables us to log
	 * them all in the same transaction as the root change.
	 */
	resv->fsbno += resv->used;
	resv->len -= resv->used;
	resv->used = 0;

	if (resv->len == 0)
		return 0;

	trace_xrep_newbt_free_blocks(sc->mp,
			XFS_FSB_TO_AGNO(sc->mp, resv->fsbno),
			XFS_FSB_TO_AGBNO(sc->mp, resv->fsbno),
			resv->len, xnr->oinfo.oi_owner);

	__xfs_bmap_add_free(sc->tp, resv->fsbno, resv->len, &xnr->oinfo, false,
			true);

	return 0;
}

/* Free all the accounting info and disk space we reserved for a new btree. */
void
xrep_newbt_destroy(
	struct xrep_newbt	*xnr,
	int			error)
{
	struct xfs_scrub	*sc = xnr->sc;
	struct xrep_newbt_resv	*resv, *n;
	int			err2;

	/*
	 * If the filesystem already went down, we can't free the blocks.  Skip
	 * ahead to freeing the incore metadata because we can't fix anything.
	 */
	if (XFS_FORCED_SHUTDOWN(sc->mp))
		goto junkit;

	list_for_each_entry_safe(resv, n, &xnr->resv_list, list) {
		err2 = xrep_newbt_destroy_reservation(xnr, resv, error != 0);
		if (err2)
			goto junkit;

		list_del(&resv->list);
		kmem_free(resv);
	}

junkit:
	/*
	 * If we still have reservations attached to @newbt, cleanup must have
	 * failed and the filesystem is about to go down.  Clean up the incore
	 * reservations.
	 */
	list_for_each_entry_safe(resv, n, &xnr->resv_list, list) {
		xfs_extent_free_defer_type.abort_intent(resv->efi);
		list_del(&resv->list);
		kmem_free(resv);
	}

	if (sc->ip) {
		kmem_cache_free(xfs_ifork_zone, xnr->ifake.if_fork);
		xnr->ifake.if_fork = NULL;
	}
}

/* Feed one of the reserved btree blocks to the bulk loader. */
int
xrep_newbt_claim_block(
	struct xfs_btree_cur	*cur,
	struct xrep_newbt	*xnr,
	union xfs_btree_ptr	*ptr)
{
	struct xrep_newbt_resv	*resv;
	xfs_fsblock_t		fsb;

	/*
	 * The first item in the list should always have a free block unless
	 * we're completely out.
	 */
	resv = list_first_entry(&xnr->resv_list, struct xrep_newbt_resv, list);
	if (resv->used == resv->len)
		return -ENOSPC;

	/*
	 * Peel off a block from the start of the reservation.  We allocate
	 * blocks in order to place blocks on disk in increasing record or key
	 * order.  The block reservations tend to end up on the list in
	 * decreasing order, which hopefully results in leaf blocks ending up
	 * together.
	 */
	fsb = resv->fsbno + resv->used;
	resv->used++;

	/* If we used all the blocks in this reservation, move it to the end. */
	if (resv->used == resv->len)
		list_move_tail(&resv->list, &xnr->resv_list);

	trace_xrep_newbt_claim_block(cur->bc_mp,
			XFS_FSB_TO_AGNO(cur->bc_mp, fsb),
			XFS_FSB_TO_AGBNO(cur->bc_mp, fsb),
			1, xnr->oinfo.oi_owner);

	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
		ptr->l = cpu_to_be64(fsb);
	else
		ptr->s = cpu_to_be32(XFS_FSB_TO_AGBNO(cur->bc_mp, fsb));
	return 0;
}

/*
 * Estimate proper slack values for a btree that's being reloaded.
 *
 * Under most circumstances, we'll take whatever default loading value the
 * btree bulk loading code calculates for us.  However, there are some
 * exceptions to this rule:
 *
 * (1) If someone turned one of the debug knobs.
 * (2) If this is a per-AG btree and the AG has less than ~9% space free.
 * (3) If this is an inode btree and the FS has less than ~9% space free.
 *
 * Note that we actually use 3/32 for the comparison to avoid division.
 */
void
xrep_bload_estimate_slack(
	struct xfs_scrub	*sc,
	struct xfs_btree_bload	*bload)
{
	uint64_t		free;
	uint64_t		sz;

	/*
	 * The xfs_globals values are set to -1 (i.e. take the bload defaults)
	 * unless someone has set them otherwise, so we just pull the values
	 * here.
	 */
	bload->leaf_slack = xfs_globals.bload_leaf_slack;
	bload->node_slack = xfs_globals.bload_node_slack;

	if (sc->ops->type == ST_PERAG) {
		free = sc->sa.pag->pagf_freeblks;
		sz = xfs_ag_block_count(sc->mp, sc->sa.agno);
	} else {
		free = percpu_counter_sum(&sc->mp->m_fdblocks);
		sz = sc->mp->m_sb.sb_dblocks;
	}

	/* No further changes if there's more than 3/32ths space left. */
	if (free >= ((sz * 3) >> 5))
		return;

	/* We're low on space; load the btrees as tightly as possible. */
	if (bload->leaf_slack < 0)
		bload->leaf_slack = 0;
	if (bload->node_slack < 0)
		bload->node_slack = 0;
}

/*
 * Reconstructing per-AG Btrees
 *
 * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
 * we scan secondary space metadata to derive the records that should be in
 * the damaged btree, initialize a fresh btree root, and insert the records.
 * Note that for rebuilding the rmapbt we scan all the primary data to
 * generate the new records.
 *
 * However, that leaves the matter of removing all the metadata describing the
 * old broken structure.  For primary metadata we use the rmap data to collect
 * every extent with a matching rmap owner (bitmap); we then iterate all other
 * metadata structures with the same rmap owner to collect the extents that
 * cannot be removed (sublist).  We then subtract sublist from bitmap to
 * derive the blocks that were used by the old btree.  These blocks can be
 * reaped.
 *
 * For rmapbt reconstructions we must use different tactics for extent
 * collection.  First we iterate all primary metadata (this excludes the old
 * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
 * records are collected as bitmap.  The bnobt records are collected as
 * sublist.  As with the other btrees we subtract sublist from bitmap, and the
 * result (since the rmapbt lives in the free space) are the blocks from the
 * old rmapbt.
 *
 * Disposal of Blocks from Old per-AG Btrees
 *
 * Now that we've constructed a new btree to replace the damaged one, we want
 * to dispose of the blocks that (we think) the old btree was using.
 * Previously, we used the rmapbt to collect the extents (bitmap) with the
 * rmap owner corresponding to the tree we rebuilt, collected extents for any
 * blocks with the same rmap owner that are owned by another data structure
 * (sublist), and subtracted sublist from bitmap.  In theory the extents
 * remaining in bitmap are the old btree's blocks.
 *
 * Unfortunately, it's possible that the btree was crosslinked with other
 * blocks on disk.  The rmap data can tell us if there are multiple owners, so
 * if the rmapbt says there is an owner of this block other than @oinfo, then
 * the block is crosslinked.  Remove the reverse mapping and continue.
 *
 * If there is one rmap record, we can free the block, which removes the
 * reverse mapping but doesn't add the block to the free space.  Our repair
 * strategy is to hope the other metadata objects crosslinked on this block
 * will be rebuilt (atop different blocks), thereby removing all the cross
 * links.
 *
 * If there are no rmap records at all, we also free the block.  If the btree
 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
 * supposed to be a rmap record and everything is ok.  For other btrees there
 * had to have been an rmap entry for the block to have ended up on @bitmap,
 * so if it's gone now there's something wrong and the fs will shut down.
 *
 * Note: If there are multiple rmap records with only the same rmap owner as
 * the btree we're trying to rebuild and the block is indeed owned by another
 * data structure with the same rmap owner, then the block will be in sublist
 * and therefore doesn't need disposal.  If there are multiple rmap records
 * with only the same rmap owner but the block is not owned by something with
 * the same rmap owner, the block will be freed.
 *
 * The caller is responsible for locking the AG headers for the entire rebuild
 * operation so that nothing else can sneak in and change the AG state while
 * we're not looking.  We also assume that the caller already invalidated any
 * buffers associated with @bitmap.
 */

/* Ensure the freelist is the correct size. */
int
xrep_fix_freelist(
	struct xfs_scrub	*sc,
	int			alloc_flags)
{
	struct xfs_alloc_arg	args = {0};

	args.mp = sc->mp;
	args.tp = sc->tp;
	args.agno = sc->sa.agno;
	args.alignment = 1;
	args.pag = sc->sa.pag;

	return xfs_alloc_fix_freelist(&args, alloc_flags);
}

/*
 * Put a block back on the AGFL.
 */
STATIC int
xrep_put_freelist(
	struct xfs_scrub	*sc,
	xfs_agblock_t		agbno)
{
	int			error;

	/* Make sure there's space on the freelist. */
	error = xrep_fix_freelist(sc, 0);
	if (error)
		return error;

	/*
	 * Since we're "freeing" a lost block onto the AGFL, we have to
	 * create an rmap for the block prior to merging it or else other
	 * parts will break.
	 */
	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
			&XFS_RMAP_OINFO_AG);
	if (error)
		return error;

	/* Put the block on the AGFL. */
	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
			agbno, 0);
	if (error)
		return error;
	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
			XFS_EXTENT_BUSY_SKIP_DISCARD);

	return 0;
}

/* Try to invalidate the incore buffer for a block that we're about to free. */
STATIC void
xrep_reap_invalidate_block(
	struct xfs_scrub	*sc,
	xfs_fsblock_t		fsbno)
{
	struct xfs_buf		*bp;

	/*
	 * If there's an incore buffer for exactly this block, invalidate it.
	 * Avoid invalidating AG headers and post-EOFS blocks because we never
	 * own those; and if we can't TRYLOCK the buffer we assume it's owned
	 * by someone else.
	 */
	if (!xfs_verify_fsbno(sc->mp, fsbno))
		return;

	bp = xfs_buf_incore(sc->mp->m_ddev_targp,
			XFS_FSB_TO_DADDR(sc->mp, fsbno),
			XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
	if (!bp)
		return;

	xfs_trans_bjoin(sc->tp, bp);
	xfs_trans_binval(sc->tp, bp);
}

struct xrep_reap_block {
	struct xfs_scrub		*sc;
	const struct xfs_owner_info	*oinfo;
	enum xfs_ag_resv_type		resv;
	unsigned int			deferred;
};

/* Dispose of a single block. */
STATIC int
xrep_reap_block(
	uint64_t			fsbno,
	void				*priv)
{
	struct xrep_reap_block		*rb = priv;
	struct xfs_scrub		*sc = rb->sc;
	struct xfs_btree_cur		*cur;
	struct xfs_buf			*agf_bp = NULL;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	bool				has_other_rmap;
	bool				need_roll = true;
	int				error;

	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);

	ASSERT(sc->ip != NULL || agno == sc->sa.agno);

	trace_xrep_dispose_btree_extent(sc->mp, agno, agbno, 1);

	/*
	 * If we are repairing per-inode metadata, we need to read in the AGF
	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
	 * the AGF buffer that the setup functions already grabbed.
	 */
	if (sc->ip) {
		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
		if (error)
			return error;
	} else {
		agf_bp = sc->sa.agf_bp;
	}
	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);

	/* Can we find any other rmappings? */
	error = xfs_rmap_has_other_keys(cur, agbno, 1, rb->oinfo,
			&has_other_rmap);
	xfs_btree_del_cursor(cur, error);
	if (error)
		goto out_free;

	/*
	 * If there are other rmappings, this block is cross linked and must
	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
	 * we were the only owner of the block, so free the extent, which will
	 * also remove the rmap.
	 *
	 * XXX: XFS doesn't support detecting the case where a single block
	 * metadata structure is crosslinked with a multi-block structure
	 * because the buffer cache doesn't detect aliasing problems, so we
	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
	 * blow on writeout, the filesystem will shut down, and the admin gets
	 * to run xfs_repair.
	 */
	if (has_other_rmap) {
		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1,
				rb->oinfo);
	} else if (rb->resv == XFS_AG_RESV_AGFL) {
		xrep_reap_invalidate_block(sc, fsbno);
		error = xrep_put_freelist(sc, agbno);
	} else if (rb->resv == XFS_AG_RESV_RMAPBT) {
		/*
		 * rmapbt blocks are counted as free space, so we have to pass
		 * XFS_AG_RESV_RMAPBT in the freeing operation to avoid
		 * decreasing fdblocks incorrectly.
		 */
		xrep_reap_invalidate_block(sc, fsbno);
		error = xfs_free_extent(sc->tp, fsbno, 1, rb->oinfo, rb->resv);
	} else {
		/*
		 * Use deferred frees to get rid of the old btree blocks to try
		 * to minimize the window in which we could crash and lose the
		 * old blocks.  However, we still need to roll the transaction
		 * every 100 or so EFIs so that we don't exceed the log
		 * reservation.
		 */
		xrep_reap_invalidate_block(sc, fsbno);
		__xfs_bmap_add_free(sc->tp, fsbno, 1, rb->oinfo, false, false);
		rb->deferred++;
		need_roll = rb->deferred > 100;
	}
	if (agf_bp != sc->sa.agf_bp)
		xfs_trans_brelse(sc->tp, agf_bp);
	if (error || !need_roll)
		return error;

	rb->deferred = 0;
	return xrep_roll_trans(sc);

out_free:
	if (agf_bp != sc->sa.agf_bp)
		xfs_trans_brelse(sc->tp, agf_bp);
	return error;
}

/* Dispose of every block of every extent in the bitmap. */
int
xrep_reap_extents(
	struct xfs_scrub		*sc,
	struct xbitmap			*bitmap,
	const struct xfs_owner_info	*oinfo,
	enum xfs_ag_resv_type		type)
{
	struct xrep_reap_block		rb = {
		.sc			= sc,
		.oinfo			= oinfo,
		.resv			= type,
	};
	int				error = 0;

	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));

	error = xbitmap_walk_bits(bitmap, xrep_reap_block, &rb);
	if (error || rb.deferred == 0)
		return error;

	return xrep_roll_trans(sc);
}

/*
 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
 *
 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
 * the AG headers by using the rmap data to rummage through the AG looking for
 * btree roots.  This is not guaranteed to work if the AG is heavily damaged
 * or the rmap data are corrupt.
 *
 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
 * AGI is being rebuilt.  It must maintain these locks until it's safe for
 * other threads to change the btrees' shapes.  The caller provides
 * information about the btrees to look for by passing in an array of
 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
 * The (root, height) fields will be set on return if anything is found.  The
 * last element of the array should have a NULL buf_ops to mark the end of the
 * array.
 *
 * For every rmapbt record matching any of the rmap owners in btree_info,
 * read each block referenced by the rmap record.  If the block is a btree
 * block from this filesystem matching any of the magic numbers and has a
 * level higher than what we've already seen, remember the block and the
 * height of the tree required to have such a block.  When the call completes,
 * we return the highest block we've found for each btree description; those
 * should be the roots.
 */

struct xrep_findroot {
	struct xfs_scrub		*sc;
	struct xfs_buf			*agfl_bp;
	struct xfs_agf			*agf;
	struct xrep_find_ag_btree	*btree_info;
};

/* See if our block is in the AGFL. */
STATIC int
xrep_findroot_agfl_walk(
	struct xfs_mount	*mp,
	xfs_agblock_t		bno,
	void			*priv)
{
	xfs_agblock_t		*agbno = priv;

	return (*agbno == bno) ? -ECANCELED : 0;
}

/* Does this block match the btree information passed in? */
STATIC int
xrep_findroot_block(
	struct xrep_findroot		*ri,
	struct xrep_find_ag_btree	*fab,
	uint64_t			owner,
	xfs_agblock_t			agbno,
	bool				*done_with_block)
{
	struct xfs_mount		*mp = ri->sc->mp;
	struct xfs_buf			*bp;
	struct xfs_btree_block		*btblock;
	xfs_daddr_t			daddr;
	int				block_level;
	int				error = 0;

	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);

	/*
	 * Blocks in the AGFL have stale contents that might just happen to
	 * have a matching magic and uuid.  We don't want to pull these blocks
	 * in as part of a tree root, so we have to filter out the AGFL stuff
	 * here.  If the AGFL looks insane we'll just refuse to repair.
	 */
	if (owner == XFS_RMAP_OWN_AG) {
		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
				xrep_findroot_agfl_walk, &agbno);
		if (error == -ECANCELED)
			return 0;
		if (error)
			return error;
	}

	/*
	 * Read the buffer into memory so that we can see if it's a match for
	 * our btree type.  We have no clue if it is beforehand, and we want to
	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
	 * will cause needless disk reads in subsequent calls to this function)
	 * and logging metadata verifier failures.
	 *
	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
	 * memory from some other caller it will already have b_ops assigned.
	 * If it was in memory from a previous unsuccessful findroot_block
	 * call, the buffer won't have b_ops but it should be clean and ready
	 * for us to try to verify if the read call succeeds.  The same applies
	 * if the buffer wasn't in memory at all.
	 *
	 * Note: If we never match a btree type with this buffer, it will be
	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
	 * the buffer gets written.
	 */
	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
			mp->m_bsize, 0, &bp, NULL);
	if (error)
		return error;

	/* Ensure the block magic matches the btree type we're looking for. */
	btblock = XFS_BUF_TO_BLOCK(bp);
	ASSERT(fab->buf_ops->magic[1] != 0);
	if (btblock->bb_magic != fab->buf_ops->magic[1])
		goto out;

	/*
	 * If the buffer already has ops applied and they're not the ones for
	 * this btree type, we know this block doesn't match the btree and we
	 * can bail out.
	 *
	 * If the buffer ops match ours, someone else has already validated
	 * the block for us, so we can move on to checking if this is a root
	 * block candidate.
	 *
	 * If the buffer does not have ops, nobody has successfully validated
	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
	 * and structure match this btree type then we'll move on to checking
	 * if it's a root block candidate.  If there is no match, bail out.
	 */
	if (bp->b_ops) {
		if (bp->b_ops != fab->buf_ops)
			goto out;
	} else {
		ASSERT(!xfs_trans_buf_is_dirty(bp));
		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
				&mp->m_sb.sb_meta_uuid))
			goto out;
		/*
		 * Read verifiers can reference b_ops, so we set the pointer
		 * here.  If the verifier fails we'll reset the buffer state
		 * to what it was before we touched the buffer.
		 */
		bp->b_ops = fab->buf_ops;
		fab->buf_ops->verify_read(bp);
		if (bp->b_error) {
			bp->b_ops = NULL;
			bp->b_error = 0;
			goto out;
		}

		/*
		 * Some read verifiers will (re)set b_ops, so we must be
		 * careful not to change b_ops after running the verifier.
		 */
	}

	/*
	 * This block passes the magic/uuid and verifier tests for this btree
	 * type.  We don't need the caller to try the other tree types.
	 */
	*done_with_block = true;

	/*
	 * Compare this btree block's level to the height of the current
	 * candidate root block.
	 *
	 * If the level matches the root we found previously, throw away both
	 * blocks because there can't be two candidate roots.
	 *
	 * If level is lower in the tree than the root we found previously,
	 * ignore this block.
	 */
	block_level = xfs_btree_get_level(btblock);
	if (block_level + 1 == fab->height) {
		fab->root = NULLAGBLOCK;
		goto out;
	} else if (block_level < fab->height) {
		goto out;
	}

	/*
	 * This is the highest block in the tree that we've found so far.
	 * Update the btree height to reflect what we've learned from this
	 * block.
	 */
	fab->height = block_level + 1;

	/*
	 * If this block doesn't have sibling pointers, then it's the new root
	 * block candidate.  Otherwise, the root will be found farther up the
	 * tree.
	 */
	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
		fab->root = agbno;
	else
		fab->root = NULLAGBLOCK;

	trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
			be32_to_cpu(btblock->bb_magic), fab->height - 1);
out:
	xfs_trans_brelse(ri->sc->tp, bp);
	return error;
}

/*
 * Do any of the blocks in this rmap record match one of the btrees we're
 * looking for?
 */
STATIC int
xrep_findroot_rmap(
	struct xfs_btree_cur		*cur,
	struct xfs_rmap_irec		*rec,
	void				*priv)
{
	struct xrep_findroot		*ri = priv;
	struct xrep_find_ag_btree	*fab;
	xfs_agblock_t			b;
	bool				done;
	int				error = 0;

	/* Ignore anything that isn't AG metadata. */
	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
		return 0;

	/* Otherwise scan each block + btree type. */
	for (b = 0; b < rec->rm_blockcount; b++) {
		done = false;
		for (fab = ri->btree_info; fab->buf_ops; fab++) {
			if (rec->rm_owner != fab->rmap_owner)
				continue;
			error = xrep_findroot_block(ri, fab,
					rec->rm_owner, rec->rm_startblock + b,
					&done);
			if (error)
				return error;
			if (done)
				break;
		}
	}

	return 0;
}

/* Find the roots of the per-AG btrees described in btree_info. */
int
xrep_find_ag_btree_roots(
	struct xfs_scrub		*sc,
	struct xfs_buf			*agf_bp,
	struct xrep_find_ag_btree	*btree_info,
	struct xfs_buf			*agfl_bp)
{
	struct xfs_mount		*mp = sc->mp;
	struct xrep_findroot		ri;
	struct xrep_find_ag_btree	*fab;
	struct xfs_btree_cur		*cur;
	int				error;

	ASSERT(xfs_buf_islocked(agf_bp));
	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));

	ri.sc = sc;
	ri.btree_info = btree_info;
	ri.agf = agf_bp->b_addr;
	ri.agfl_bp = agfl_bp;
	for (fab = btree_info; fab->buf_ops; fab++) {
		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
		fab->root = NULLAGBLOCK;
		fab->height = 0;
	}

	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
	xfs_btree_del_cursor(cur, error);

	return error;
}

/* Force a quotacheck the next time we mount. */
void
xrep_force_quotacheck(
	struct xfs_scrub	*sc,
	xfs_dqtype_t		type)
{
	uint			flag;

	flag = xfs_quota_chkd_flag(type);
	if (!(flag & sc->mp->m_qflags))
		return;

	sc->mp->m_qflags &= ~flag;
	spin_lock(&sc->mp->m_sb_lock);
	sc->mp->m_sb.sb_qflags &= ~flag;
	spin_unlock(&sc->mp->m_sb_lock);
	xfs_log_sb(sc->tp);
}

/*
 * Attach dquots to this inode, or schedule quotacheck to fix them.
 *
 * This function ensures that the appropriate dquots are attached to an inode.
 * We cannot allow the dquot code to allocate an on-disk dquot block here
 * because we're already in transaction context with the inode locked.  The
 * on-disk dquot should already exist anyway.  If the quota code signals
 * corruption or missing quota information, schedule quotacheck, which will
 * repair corruptions in the quota metadata.
 */
int
xrep_ino_dqattach(
	struct xfs_scrub	*sc)
{
	int			error;

	error = xfs_qm_dqattach_locked(sc->ip, false);
	switch (error) {
	case -EFSBADCRC:
	case -EFSCORRUPTED:
	case -ENOENT:
		xfs_err_ratelimited(sc->mp,
"inode %llu repair encountered quota error %d, quotacheck forced.",
				(unsigned long long)sc->ip->i_ino, error);
		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
			xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
			xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
			xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
		/* fall through */
	case -ESRCH:
		error = 0;
		break;
	default:
		break;
	}

	return error;
}

/* Initialize all the btree cursors for an AG repair. */
void
xrep_ag_btcur_init(
	struct xfs_scrub	*sc,
	struct xchk_ag		*sa)
{
	struct xfs_mount	*mp = sc->mp;
	xfs_agnumber_t		agno = sa->agno;

	xchk_perag_get(sc->mp, sa);

	/* Set up a bnobt cursor for cross-referencing. */
	if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT &&
	    sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) {
		sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
				agno, XFS_BTNUM_BNO);
		sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
				agno, XFS_BTNUM_CNT);
	}

	/* Set up a inobt cursor for cross-referencing. */
	if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT &&
	    sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) {
		sa->ino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp,
				agno, XFS_BTNUM_INO);
		if (xfs_sb_version_hasfinobt(&mp->m_sb))
			sa->fino_cur = xfs_inobt_init_cursor(mp, sc->tp,
					sa->agi_bp, agno, XFS_BTNUM_FINO);
	}

	/* Set up a rmapbt cursor for cross-referencing. */
	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT &&
	    xfs_sb_version_hasrmapbt(&mp->m_sb))
		sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
				agno);

	/* Set up a refcountbt cursor for cross-referencing. */
	if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT &&
	    xfs_sb_version_hasreflink(&mp->m_sb))
		sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
				sa->agf_bp, agno);
}

/* Initialize all the btree cursors for a RT repair. */
void
xrep_rt_btcur_init(
	struct xfs_scrub	*sc,
	struct xchk_rt		*sr)
{
	struct xfs_mount	*mp = sc->mp;

	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RTRMAPBT &&
	    xfs_sb_version_hasrtrmapbt(&mp->m_sb))
		sr->rmap_cur = xfs_rtrmapbt_init_cursor(mp, sc->tp,
				mp->m_rrmapip);

	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RTREFCBT &&
	    xfs_sb_version_hasrtreflink(&mp->m_sb))
		sr->refc_cur = xfs_rtrefcountbt_init_cursor(mp, sc->tp,
				mp->m_rrefcountip);
}

/* Reinitialize the per-AG block reservation for the AG we just fixed. */
int
xrep_reset_perag_resv(
	struct xfs_scrub	*sc)
{
	int			error;

	if (!(sc->flags & XREP_RESET_PERAG_RESV))
		return 0;

	ASSERT(sc->sa.pag != NULL);
	ASSERT(sc->ops->type == ST_PERAG);
	ASSERT(sc->tp);

	sc->flags &= ~XREP_RESET_PERAG_RESV;
	error = xfs_ag_resv_free(sc->sa.pag);
	if (error)
		goto out;
	error = xfs_ag_resv_init(sc->sa.pag, sc->tp);
out:
	return error;
}

/*
 * Repair the ondisk forks of a metadata inode.  The caller must ensure that
 * sc->ip points to the metadata inode and the ILOCK is held on that inode.
 * The inode must not be joined to the transaction before the call, and will
 * not be afterwards.
 */
int
xrep_metadata_inode_forks(
	struct xfs_scrub	*sc)
{
	__u32			smtype;
	__u32			smflags;
	bool			dirty = false;
	int			error;

	/* Clear the reflink flag since metadata never shares. */
	if (xfs_is_reflink_inode(sc->ip)) {
		dirty = true;
		xfs_trans_ijoin(sc->tp, sc->ip, 0);
		error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp);
		if (error)
			return error;
	}

	/* Clear the attr forks since metadata shouldn't have that. */
	if (xfs_inode_hasattr(sc->ip)) {
		if (!dirty) {
			dirty = true;
			xfs_trans_ijoin(sc->tp, sc->ip, 0);
		}
		error = xrep_xattr_reset_fork(sc, sc->ip);
		if (error)
			return error;
	}

	/*
	 * If we modified the inode, roll the transaction but don't rejoin the
	 * inode to the new transaction because xrep_bmap_data can do that.
	 */
	if (dirty) {
		error = xfs_trans_roll(&sc->tp);
		if (error)
			return error;
		dirty = false;
	}

	/*
	 * Let's see if the forks need repair.  We're going to open-code calls
	 * to the bmapbtd scrub and repair functions so that we can hang on to
	 * the resources that we already acquired instead of using the standard
	 * setup/teardown routines.
	 */
	smtype = sc->sm->sm_type;
	smflags = sc->sm->sm_flags;
	sc->sm->sm_type = XFS_SCRUB_TYPE_BMBTD;
	sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;

	error = xchk_metadata_inode_forks(sc);
	if (error || !xfs_scrub_needs_repair(sc->sm))
		goto out;

	/*
	 * Repair the data fork.  This will potentially join the inode to the
	 * transaction.  We do not allow unwritten extents in metadata files.
	 */
	error = xrep_bmap(sc, XFS_DATA_FORK, false);
	if (error)
		goto out;

	/*
	 * Roll the transaction but don't rejoin the inode to the new
	 * transaction because we're done making changes to the inode.
	 */
	error = xfs_trans_roll(&sc->tp);
	if (error)
		goto out;

	/* Bail out if we still need repairs. */
	sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
	error = xchk_metadata_inode_forks(sc);
	if (error)
		goto out;
	if (xfs_scrub_needs_repair(sc->sm))
		error = -EFSCORRUPTED;
out:
	sc->sm->sm_type = smtype;
	sc->sm->sm_flags = smflags;
	return error;
}

/*
 * Create a temporary file for reconstructing metadata, with the intention of
 * atomically swapping the temporary file's contents with the file that's
 * being repaired.
 */
int
xrep_setup_tempfile(
	struct xfs_scrub	*sc,
	uint16_t		mode)
{
	struct xfs_ialloc_args	args = {
		.pip		= sc->mp->m_rootip,
		.nlink 		= 0,
	};
	struct xfs_mount	*mp = sc->mp;
	struct xfs_trans	*tp = NULL;
	struct xfs_dquot	*udqp;
	struct xfs_dquot	*gdqp;
	struct xfs_dquot	*pdqp;
	struct xfs_trans_res	*tres;
	unsigned int		resblks;
	bool			is_dir = S_ISDIR(mode);
	bool			use_atomic;
	int			error;

	xfs_ialloc_internal_args(&args, mode);

	if (!(sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
		return 0;
	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	ASSERT(sc->tp == NULL);
	ASSERT(sc->tempip == NULL);

	/* Enable atomic extent swapping. */
	error = xfs_swapext_enable_log_assist(mp, true, &use_atomic);
	if (error)
		return error;
	ASSERT(use_atomic);
	sc->flags |= XREP_ATOMIC_SWAPEXT;

	/*
	 * Make sure that we have allocated dquot(s) on disk.  The temporary
	 * inode should be completely root owned so that we don't fail due to
	 * quota limits.
	 */
	error = xfs_icreate_dqalloc(&args, &udqp, &gdqp, &pdqp);
	if (error)
		return error;

	if (is_dir) {
		resblks = XFS_MKDIR_SPACE_RES(mp, 0);
		tres = &M_RES(mp)->tr_mkdir;
	} else {
		resblks = XFS_IALLOC_SPACE_RES(mp);
		tres = &M_RES(mp)->tr_create_tmpfile;
	}

	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
			&tp);
	if (error)
		goto out_release_dquots;

	/* Allocate inode, set up directory. */
	error = xfs_dir_ialloc(&tp, &args, &sc->tempip);
	if (error)
		goto out_trans_cancel;

	/*
	 * Mark our temporary file as private so that LSMs and the ACL code
	 * don't try to add their own metadata or reason about these files.
	 * The file should never be exposed to userspace.
	 */
	VFS_I(sc->tempip)->i_flags |= S_PRIVATE;
	VFS_I(sc->tempip)->i_opflags &= ~IOP_XATTR;

	if (is_dir) {
		error = xfs_dir_init(tp, sc->tempip, sc->mp->m_rootip);
		if (error)
			goto out_trans_cancel;
	}

	/*
	 * Attach the dquot(s) to the inodes and modify them incore.
	 * These ids of the inode couldn't have changed since the new
	 * inode has been locked ever since it was created.
	 */
	xfs_qm_vop_create_dqattach(tp, sc->tempip, udqp, gdqp, pdqp);

	/*
	 * Put our temp file on the unlinked list so it's purged automatically.
	 * Anything being reconstructed using this file must be atomically
	 * swapped with the original file because the contents here will be
	 * purged when the inode is dropped or log recovery cleans out the
	 * unlinked list.
	 */
	error = xfs_iunlink(tp, sc->tempip);
	if (error)
		goto out_trans_cancel;

	error = xfs_trans_commit(tp);
	if (error)
		goto out_release_inode;

	xfs_qm_dqrele(udqp);
	xfs_qm_dqrele(gdqp);
	xfs_qm_dqrele(pdqp);

	/* Finish setting up the incore / vfs context. */
	xfs_setup_iops(sc->tempip);
	xfs_finish_inode_setup(sc->tempip);

	sc->temp_ilock_flags = 0;
	return error;

out_trans_cancel:
	xfs_trans_cancel(tp);
out_release_inode:
	/*
	 * Wait until after the current transaction is aborted to finish the
	 * setup of the inode and release the inode.  This prevents recursive
	 * transactions and deadlocks from xfs_inactive.
	 */
	if (sc->tempip) {
		xfs_finish_inode_setup(sc->tempip);
		xfs_irele(sc->tempip);
	}
out_release_dquots:
	xfs_qm_dqrele(udqp);
	xfs_qm_dqrele(gdqp);
	xfs_qm_dqrele(pdqp);

	return error;
}

/* Make the orphanage owned by root. */
STATIC int
xrep_chown_orphanage(
	struct xfs_scrub	*sc,
	struct xfs_inode	*dp)
{
	struct xfs_trans	*tp;
	struct xfs_mount	*mp = sc->mp;
	struct xfs_dquot	*udqp = NULL, *gdqp = NULL, *pdqp = NULL;
	struct xfs_dquot	*oldu = NULL, *oldg = NULL, *oldp = NULL;
	struct inode		*inode = VFS_I(dp);
	int			error;

	error = xfs_qm_vop_dqalloc(dp, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
			XFS_QMOPT_QUOTALL, &udqp, &gdqp, &pdqp);
	if (error)
		return error;

	error = xfs_trans_alloc_ichange(dp, udqp, gdqp, pdqp, true, &tp);
	if (error)
		goto out_dqrele;

	/*
	 * CAP_FSETID overrides the following restrictions:
	 *
	 * The set-user-ID and set-group-ID bits of a file will be
	 * cleared upon successful return from chown()
	 */
	if ((inode->i_mode & (S_ISUID|S_ISGID)) && !capable(CAP_FSETID))
		inode->i_mode &= ~(S_ISUID|S_ISGID);

	/*
	 * Change the ownerships and register quota modifications
	 * in the transaction.
	 */
	if (!uid_eq(inode->i_uid, GLOBAL_ROOT_UID)) {
		if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) {
			ASSERT(udqp);
			oldu = xfs_qm_vop_chown(tp, dp, &dp->i_udquot, udqp);
		}
		inode->i_uid = GLOBAL_ROOT_UID;
	}
	if (!gid_eq(inode->i_gid, GLOBAL_ROOT_GID)) {
		if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) {
			ASSERT(xfs_sb_version_has_pquotino(&mp->m_sb) ||
			       !XFS_IS_PQUOTA_ON(mp));
			ASSERT(gdqp);
			oldg = xfs_qm_vop_chown(tp, dp, &dp->i_gdquot, gdqp);
		}
		inode->i_gid = GLOBAL_ROOT_GID;
	}
	if (dp->i_d.di_projid != 0) {
		if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_PQUOTA_ON(mp)) {
			oldp = xfs_qm_vop_chown(tp, dp, &dp->i_pdquot, pdqp);
		}
		dp->i_d.di_projid = 0;
	}

	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);

	XFS_STATS_INC(mp, xs_ig_attrchg);

	if (mp->m_flags & XFS_MOUNT_WSYNC)
		xfs_trans_set_sync(tp);
	error = xfs_trans_commit(tp);

	xfs_qm_dqrele(oldu);
	xfs_qm_dqrele(oldg);
	xfs_qm_dqrele(oldp);

out_dqrele:
	xfs_qm_dqrele(udqp);
	xfs_qm_dqrele(gdqp);
	xfs_qm_dqrele(pdqp);
	return error;
}

#define ORPHANAGE	"lost+found"

/* Create the orphanage directory, and set sc->orphanage to it. */
int
xrep_setup_orphanage(
	struct xfs_scrub	*sc)
{
	struct xfs_mount	*mp = sc->mp;
	struct dentry		*root_dentry, *orphanage_dentry;
	struct inode		*root_inode = VFS_I(sc->mp->m_rootip);
	struct inode		*orphanage_inode;
	int			error;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	ASSERT(sc->tp == NULL);
	ASSERT(sc->orphanage == NULL);

	/* Find the dentry for the root directory... */
	root_dentry = d_find_alias(root_inode);
	if (!root_dentry) {
		error = -EFSCORRUPTED;
		goto out;
	}

	/* ...which is a directory, right? */
	if (!d_is_dir(root_dentry)) {
		error = -EFSCORRUPTED;
		goto out_dput_root;
	}

	/* Try to find the orphanage directory. */
	inode_lock_nested(root_inode, I_MUTEX_PARENT);
	orphanage_dentry = lookup_one_len(ORPHANAGE, root_dentry,
			strlen(ORPHANAGE));
	if (IS_ERR(orphanage_dentry)) {
		error = PTR_ERR(orphanage_dentry);
		goto out_unlock_root;
	}

	/* Nothing found?  Call mkdir to create the orphanage. */
	if (d_really_is_negative(orphanage_dentry)) {
		error = vfs_mkdir(&init_user_ns, root_inode, orphanage_dentry,
				0755);
		if (error)
			goto out_dput_orphanage;
	}

	/* Not a directory? Bail out. */
	if (!d_is_dir(orphanage_dentry)) {
		error = -ENOTDIR;
		goto out_dput_orphanage;
	}

	/*
	 * Grab a reference to the orphanage.  This /should/ succeed since
	 * we hold the root directory locked and therefore nobody can delete
	 * the orphanage.
	 */
	orphanage_inode = igrab(d_inode(orphanage_dentry));
	if (!orphanage_inode) {
		error = -ENOENT;
		goto out_dput_orphanage;
	}

	/* Make sure the orphanage is owned by root. */
	error = xrep_chown_orphanage(sc, XFS_I(orphanage_inode));
	if (error)
		goto out_dput_orphanage;

	/* Stash the reference for later and bail out. */
	sc->orphanage = XFS_I(orphanage_inode);
	sc->orphanage_ilock_flags = 0;

out_dput_orphanage:
	dput(orphanage_dentry);
out_unlock_root:
	inode_unlock(VFS_I(sc->mp->m_rootip));
out_dput_root:
	dput(root_dentry);
out:
	return error;
}

/*
 * Move the current file to the orphanage.  The caller must not hold any locks
 * on the orphanage and must not hold the ILOCK on sc->ip.  sc->ip and
 * sc->orphanage must not be joined to the transaction.  The function returns
 * with both inodes joined, ILOCKed, and dirty.
 */
int
xrep_move_to_orphanage(
	struct xfs_scrub	*sc)
{
	struct xfs_name		xname;
	unsigned char		fname[MAXNAMELEN + 1];
	struct xfs_inode	*dp = sc->orphanage;
	struct xfs_mount	*mp = sc->mp;
	xfs_ino_t		ino;
	unsigned int		incr = 0;
	unsigned int		linkres, dotdotres;
	int			error;

	/* No orphanage?  We can't fix this. */
	if (!sc->orphanage)
		return -EFSCORRUPTED;

	/* Try to grab the IOLOCK on the orphanage. */
	error = xchk_ilock_inverted(sc->orphanage, XFS_IOLOCK_EXCL);
	if (error)
		return error;
	sc->orphanage_ilock_flags |= XFS_IOLOCK_EXCL;

	xname.name = fname;
	xname.len = snprintf(fname, sizeof(fname), "%llu", sc->ip->i_ino);
	xname.type = xfs_mode_to_ftype(VFS_I(sc->ip)->i_mode);

	/* Make sure the filename is unique in the lost+found. */
	error = xfs_dir_lookup(sc->tp, dp, &xname, &ino, NULL);
	while (error == 0 && incr < 10000) {
		xname.len = snprintf(fname, sizeof(fname), "%llu.%u",
				sc->ip->i_ino, ++incr);
		error = xfs_dir_lookup(sc->tp, dp, &xname, &ino, NULL);
	}
	if (error == 0) {
		/* We already have 10,000 entries in the orphanage? */
		return -EFSCORRUPTED;
	}
	if (error != -ENOENT)
		return error;

	trace_xrep_move_orphanage(sc->ip, &xname, dp->i_ino);

	/*
	 * Reserve enough space to add a directory entry to the orphanage and
	 * update the dotdot entry.
	 */
	linkres = XFS_LINK_SPACE_RES(mp, xname.len);
	dotdotres = XFS_RENAME_SPACE_RES(mp, 2);
	error = xfs_trans_reserve_more(sc->tp, linkres + dotdotres, 0);
	if (error)
		return error;

	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, sc->ip, XFS_ILOCK_EXCL);
	sc->ilock_flags |= XFS_ILOCK_EXCL;
	sc->orphanage_ilock_flags |= XFS_ILOCK_EXCL;

	xfs_trans_ijoin(sc->tp, dp, 0);
	xfs_trans_ijoin(sc->tp, sc->ip, 0);

	/*
	 * Create the new name in the orphanage, and bump the link count of
	 * the orphanage if we just added a directory.
	 */
	error = xfs_dir_createname(sc->tp, dp, &xname, sc->ip->i_ino,
			linkres);
	if (error)
		return error;

	xfs_trans_ichgtime(sc->tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	if (S_ISDIR(VFS_I(sc->ip)->i_mode))
		xfs_bumplink(sc->tp, dp);
	xfs_trans_log_inode(sc->tp, dp, XFS_ILOG_CORE);

	/* Replace the dotdot entry. */
	return xfs_dir_replace(sc->tp, sc->ip, &xfs_name_dotdot, dp->i_ino,
			dotdotres);
}

/*
 * Make sure that the given range of the data fork of the temporary file is
 * mapped to written blocks.  The caller must ensure that both inodes are
 * joined to the transaction.
 */
int
xrep_fallocate(
	struct xfs_scrub	*sc,
	xfs_fileoff_t		off,
	xfs_filblks_t		len)
{
	struct xfs_bmbt_irec	map;
	xfs_fileoff_t		end = off + len;
	int			nmaps;
	int			error = 0;

	ASSERT(sc->tempip != NULL);
	ASSERT(!XFS_NOT_DQATTACHED(sc->mp, sc->tempip));

	while (off < len) {
		/*
		 * If we have a real extent mapping this block then we're
		 * in ok shape.
		 */
		nmaps = 1;
		error = xfs_bmapi_read(sc->tempip, off, end - off, &map, &nmaps,
				XFS_DATA_FORK);
		if (error)
			break;

		if (nmaps == 1 && xfs_bmap_is_written_extent(&map)) {
			off += map.br_startblock;
			continue;
		}

		/*
		 * If we find a delalloc reservation then something is very
		 * very wrong.  Bail out.
		 */
		if (map.br_startblock == DELAYSTARTBLOCK)
			return -EFSCORRUPTED;

		/*
		 * Make sure this rtsum block has a real zeroed extent
		 * allocated to it.
		 */
		nmaps = 1;
		error = xfs_bmapi_write(sc->tp, sc->tempip, off, end - off,
				XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO, 0, &map,
				&nmaps);
		if (error)
			break;

		error = xrep_roll_trans(sc);
		if (error)
			break;
		off += map.br_startblock;
	}

	return error;
}

/*
 * Write a number of bytes from the xfile into the temp file.  The copybuf must
 * be large enough to hold one filesystem block's worth of data.  The caller
 * must join both inodes to the transaction.
 */
int
xrep_set_file_contents(
	struct xfs_scrub	*sc,
	const struct xfs_buf_ops *ops,
	enum xfs_blft		type,
	xfs_fileoff_t		isize)
{
	LIST_HEAD(buffers_list);
	struct xfs_bmbt_irec	map;
	struct xfs_mount	*mp = sc->mp;
	struct xfs_buf		*bp;
	xfs_rtblock_t		off = 0;
	loff_t			pos = 0;
	unsigned int		nr_buffers = 0;
	int			nmaps;
	int			error = 0;

	ASSERT(S_ISREG(VFS_I(sc->tempip)->i_mode));

	for (; pos < isize; pos += mp->m_sb.sb_blocksize, off++) {
		size_t		count;

		/* Read block mapping for this file block. */
		nmaps = 1;
		error = xfs_bmapi_read(sc->tempip, off, 1, &map, &nmaps, 0);
		if (error)
			goto out;
		if (nmaps == 0 || !xfs_bmap_is_written_extent(&map)) {
			error = -EFSCORRUPTED;
			goto out;
		}

		/* Get the metadata buffer for this offset in the file. */
		error = xfs_trans_get_buf(sc->tp, mp->m_ddev_targp,
				XFS_FSB_TO_DADDR(mp, map.br_startblock),
				mp->m_bsize, 0, &bp);
		if (error)
			goto out;
		bp->b_ops = ops;
		xfs_trans_buf_set_type(sc->tp, bp, type);

		/* Read in a block's worth of data from the xfile. */
		count = min_t(loff_t, isize - pos, mp->m_sb.sb_blocksize);
		error = xfile_pread(sc->xfile, bp->b_addr, count, pos);
		if (error) {
			xfs_trans_brelse(sc->tp, bp);
			goto out;
		}

		/*
		 * Put this buffer on the delwri list so we can write them all
		 * out in batches.
		 */
		xfs_buf_delwri_queue(bp, &buffers_list);
		xfs_trans_brelse(sc->tp, bp);
		nr_buffers++;

		/*
		 * If we have more than 256K of data to write out, flush it to
		 * disk so we don't use up too much memory.
		 */
		if (XFS_FSB_TO_B(mp, nr_buffers) > 262144) {
			error = xfs_buf_delwri_submit(&buffers_list);
			if (error)
				goto out;
			nr_buffers = 0;
		}
	}

	/*
	 * Write the new blocks to disk.  If the ordered list isn't empty after
	 * that, then something went wrong and we have to fail.  This should
	 * never happen, but we'll check anyway.
	 */
	error = xfs_buf_delwri_submit(&buffers_list);
	if (error)
		goto out;
	if (!list_empty(&buffers_list)) {
		ASSERT(list_empty(&buffers_list));
		return -EIO;
	}

	/* Set the new inode size, if needed. */
	if (sc->tempip->i_d.di_size != isize) {
		sc->tempip->i_d.di_size = isize;
		xfs_trans_log_inode(sc->tp, sc->tempip, XFS_ILOG_CORE);
		return xrep_roll_trans(sc);
	}

	return 0;
out:
	xfs_buf_delwri_cancel(&buffers_list);
	return error;
}

/*
 * See if this buffer can pass the given ->verify_struct() function.
 *
 * If the buffer already has ops attached and they're not the ones that were
 * passed in, we reject the buffer.  Otherwise, we perform the structure test
 * (note that we do not check CRCs) and return the outcome of the test.  The
 * buffer ops and error state are left unchanged.
 */
bool
xrep_buf_verify_struct(
	struct xfs_buf			*bp,
	const struct xfs_buf_ops	*ops)
{
	const struct xfs_buf_ops	*old_ops = bp->b_ops;
	xfs_failaddr_t			fa;
	int				old_error;

	if (old_ops) {
		if (old_ops != ops)
			return false;
	}

	old_error = bp->b_error;
	bp->b_ops = ops;
	fa = bp->b_ops->verify_struct(bp);
	bp->b_ops = old_ops;
	bp->b_error = old_error;

	return fa == NULL;
}

/*
 * Fill out the swapext request and resource estimation structures in
 * preparation for swapping the contents of a metadata file that we've rebuilt
 * in the temp file.
 */
int
xrep_swapext_prep(
	struct xfs_scrub	*sc,
	int			whichfork,
	struct xfs_swapext_req	*req,
	struct xfs_swapext_res	*res)
{
	struct xfs_ifork	*ifp, *tifp;
	int			state = 0;

	ASSERT(whichfork != XFS_COW_FORK);

	/* Both files should have the relevant forks. */
	ifp = XFS_IFORK_PTR(sc->ip, whichfork);
	tifp = XFS_IFORK_PTR(sc->tempip, whichfork);
	if (!ifp || !tifp) {
		ASSERT(0);
		return -EINVAL;
	}

	memset(res, 0, sizeof(struct xfs_swapext_res));
	req->ip1 = sc->tempip;
	req->ip2 = sc->ip;
	req->startoff1 = 0;
	req->startoff2 = 0;
	req->whichfork = whichfork;
	req->blockcount = XFS_MAX_FILEOFF;
	req->flags = 0;

	/*
	 * If we're repairing xattrs or directories, always try to convert ip2
	 * to short format after swapping.
	 */
	if (whichfork == XFS_ATTR_FORK || S_ISDIR(VFS_I(sc->ip)->i_mode))
		req->flags |= XFS_SWAPEXT_INO2_SHORTFORM;

	/*
	 * Deal with either fork being in local format.  The swapext code only
	 * knows how to exchange block mappings for regular files, so we only
	 * have to know about local format for xattrs and directories.
	 */
	if (ifp->if_format == XFS_DINODE_FMT_LOCAL)
		state |= 1;
	if (tifp->if_format == XFS_DINODE_FMT_LOCAL)
		state |= 2;
	switch (state) {
	case 0:
		/* Both files have mapped extents; use the regular estimate. */
		return xfs_xchg_range_estimate(req, res);
	case 1:
		/*
		 * The file being repaired is in local format, but the temp
		 * file has mapped extents.  To perform the swap, the file
		 * being repaired will be reinitialized to have an empty extent
		 * map, so the number of exchanges is the temporary file's
		 * extent count.
		 */
		res->ip1_bcount = sc->tempip->i_d.di_nblocks;
		res->nr_exchanges = tifp->if_nextents;
		break;
	case 2:
		/*
		 * The temporary file is in local format, but the file being
		 * repaired has mapped extents.  To perform the swap, the temp
		 * file will be converted to have a single block, so the number
		 * of exchanges is (worst case) the extent count of the file
		 * being repaired plus one more.
		 */
		res->ip1_bcount = 1;
		res->ip2_bcount = sc->ip->i_d.di_nblocks;
		res->nr_exchanges = ifp->if_nextents;
		break;
	case 3:
		/*
		 * Both forks are in local format.  To perform the swap, the
		 * file being repaired will be reinitialized to have an empty
		 * extent map and the temp file will be converted to have a
		 * single block.  Only one exchange is required.
		 */
		res->ip1_bcount = 1;
		res->nr_exchanges = 1;
		break;
	}

	return xfs_swapext_estimate_overhead(req, res);
}

/*
 * Check if any part of this range of rt blocks is free, so that we don't
 * rebuild things with bad records.  Returns -EFSCORRUPTED if bad.
 */
int
xrep_rtext_is_free(
	struct xfs_scrub	*sc,
	xfs_rtblock_t		rtbno,
	xfs_filblks_t		len)
{
	struct xfs_mount	*mp = sc->mp;
	xfs_rtblock_t		startext;
	xfs_rtblock_t		endext;
	xfs_rtblock_t		extcount;
	uint32_t		mod;
	bool			is_free = false;
	int			error;

	/* Convert rt blocks to rt extents. */
	startext = div_u64_rem(rtbno, mp->m_sb.sb_rextsize, &mod);
	endext = div_u64_rem(rtbno + len - 1, mp->m_sb.sb_rextsize, &mod);

	/* Make sure this isn't free space. */
	extcount = endext - startext + 1;
	error = xfs_rtalloc_extent_is_free(mp, sc->tp, startext, extcount,
			&is_free);
	if (error)
		return error;
	if (is_free)
		return -EFSCORRUPTED;

	return 0;
}

/* Are we looking at a realtime metadata inode? */
bool
xrep_is_rtmeta_ino(
	struct xfs_scrub	*sc,
	xfs_ino_t		ino)
{
	return ino == sc->mp->m_rbmip->i_ino ||
	       ino == sc->mp->m_rsumip->i_ino ||
	       ino == sc->mp->m_rrmapip->i_ino;
}

/* Check the sanity of a rmap record for a metadata btree inode. */
int
xrep_check_ino_btree_mapping(
	struct xfs_scrub	*sc,
	const struct xfs_rmap_irec *rec)
{
	bool			is_freesp;
	int			error;

	/*
	 * Metadata btree inodes never have extended attributes, and all blocks
	 * should have the bmbt block flag set.
	 */
	if ((rec->rm_flags & XFS_RMAP_ATTR_FORK) ||
	    !(rec->rm_flags & XFS_RMAP_BMBT_BLOCK))
		return -EFSCORRUPTED;

	/* Make sure the block is within the AG. */
	if (!xfs_verify_agbext(sc->mp, sc->sa.agno, rec->rm_startblock,
				rec->rm_blockcount))
		return -EFSCORRUPTED;

	/* Make sure this isn't free space. */
	error = xfs_alloc_has_record(sc->sa.bno_cur, rec->rm_startblock,
			rec->rm_blockcount, &is_freesp);
	if (error)
		return error;
	if (is_freesp)
		return -EFSCORRUPTED;

	return 0;
}