summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/cpu/bugs.c
AgeCommit message (Collapse)Author
2023-08-18x86/srso: Correct the mitigation status when SMT is disabledBorislav Petkov (AMD)
Specify how is SRSO mitigated when SMT is disabled. Also, correct the SMT check for that. Fixes: e9fbc47b818b ("x86/srso: Disable the mitigation on unaffected configurations") Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Link: https://lore.kernel.org/r/20230814200813.p5czl47zssuej7nv@treble
2023-08-16x86/cpu/kvm: Provide UNTRAIN_RET_VMPeter Zijlstra
Similar to how it doesn't make sense to have UNTRAIN_RET have two untrain calls, it also doesn't make sense for VMEXIT to have an extra IBPB call. This cures VMEXIT doing potentially unret+IBPB or double IBPB. Also, the (SEV) VMEXIT case seems to have been overlooked. Redefine the meaning of the synthetic IBPB flags to: - ENTRY_IBPB -- issue IBPB on entry (was: entry + VMEXIT) - IBPB_ON_VMEXIT -- issue IBPB on VMEXIT And have 'retbleed=ibpb' set *BOTH* feature flags to ensure it retains the previous behaviour and issues IBPB on entry+VMEXIT. The new 'srso=ibpb_vmexit' option only sets IBPB_ON_VMEXIT. Create UNTRAIN_RET_VM specifically for the VMEXIT case, and have that check IBPB_ON_VMEXIT. All this avoids having the VMEXIT case having to check both ENTRY_IBPB and IBPB_ON_VMEXIT and simplifies the alternatives. Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230814121149.109557833@infradead.org
2023-08-16x86/cpu: Cleanup the untrain messPeter Zijlstra
Since there can only be one active return_thunk, there only needs be one (matching) untrain_ret. It fundamentally doesn't make sense to allow multiple untrain_ret at the same time. Fold all the 3 different untrain methods into a single (temporary) helper stub. Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230814121149.042774962@infradead.org
2023-08-16x86/cpu: Rename original retbleed methodsPeter Zijlstra
Rename the original retbleed return thunk and untrain_ret to retbleed_return_thunk() and retbleed_untrain_ret(). No functional changes. Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230814121148.909378169@infradead.org
2023-08-16x86/cpu: Clean up SRSO return thunk messPeter Zijlstra
Use the existing configurable return thunk. There is absolute no justification for having created this __x86_return_thunk alternative. To clarify, the whole thing looks like: Zen3/4 does: srso_alias_untrain_ret: nop2 lfence jmp srso_alias_return_thunk int3 srso_alias_safe_ret: // aliasses srso_alias_untrain_ret just so add $8, %rsp ret int3 srso_alias_return_thunk: call srso_alias_safe_ret ud2 While Zen1/2 does: srso_untrain_ret: movabs $foo, %rax lfence call srso_safe_ret (jmp srso_return_thunk ?) int3 srso_safe_ret: // embedded in movabs instruction add $8,%rsp ret int3 srso_return_thunk: call srso_safe_ret ud2 While retbleed does: zen_untrain_ret: test $0xcc, %bl lfence jmp zen_return_thunk int3 zen_return_thunk: // embedded in the test instruction ret int3 Where Zen1/2 flush the BTB entry using the instruction decoder trick (test,movabs) Zen3/4 use BTB aliasing. SRSO adds a return sequence (srso_safe_ret()) which forces the function return instruction to speculate into a trap (UD2). This RET will then mispredict and execution will continue at the return site read from the top of the stack. Pick one of three options at boot (evey function can only ever return once). [ bp: Fixup commit message uarch details and add them in a comment in the code too. Add a comment about the srso_select_mitigation() dependency on retbleed_select_mitigation(). Add moar ifdeffery for 32-bit builds. Add a dummy srso_untrain_ret_alias() definition for 32-bit alternatives needing the symbol. ] Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230814121148.842775684@infradead.org
2023-08-16x86/alternative: Make custom return thunk unconditionalPeter Zijlstra
There is infrastructure to rewrite return thunks to point to any random thunk one desires, unwrap that from CALL_THUNKS, which up to now was the sole user of that. [ bp: Make the thunks visible on 32-bit and add ifdeffery for the 32-bit builds. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230814121148.775293785@infradead.org
2023-08-14x86/srso: Disable the mitigation on unaffected configurationsBorislav Petkov (AMD)
Skip the srso cmd line parsing which is not needed on Zen1/2 with SMT disabled and with the proper microcode applied (latter should be the case anyway) as those are not affected. Fixes: 5a15d8348881 ("x86/srso: Tie SBPB bit setting to microcode patch detection") Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230813104517.3346-1-bp@alien8.de
2023-08-07Merge tag 'gds-for-linus-2023-08-01' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86/gds fixes from Dave Hansen: "Mitigate Gather Data Sampling issue: - Add Base GDS mitigation - Support GDS_NO under KVM - Fix a documentation typo" * tag 'gds-for-linus-2023-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: Documentation/x86: Fix backwards on/off logic about YMM support KVM: Add GDS_NO support to KVM x86/speculation: Add Kconfig option for GDS x86/speculation: Add force option to GDS mitigation x86/speculation: Add Gather Data Sampling mitigation
2023-08-07Merge tag 'x86_bugs_srso' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86/srso fixes from Borislav Petkov: "Add a mitigation for the speculative RAS (Return Address Stack) overflow vulnerability on AMD processors. In short, this is yet another issue where userspace poisons a microarchitectural structure which can then be used to leak privileged information through a side channel" * tag 'x86_bugs_srso' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/srso: Tie SBPB bit setting to microcode patch detection x86/srso: Add a forgotten NOENDBR annotation x86/srso: Fix return thunks in generated code x86/srso: Add IBPB on VMEXIT x86/srso: Add IBPB x86/srso: Add SRSO_NO support x86/srso: Add IBPB_BRTYPE support x86/srso: Add a Speculative RAS Overflow mitigation x86/bugs: Increase the x86 bugs vector size to two u32s
2023-08-07x86/srso: Tie SBPB bit setting to microcode patch detectionBorislav Petkov (AMD)
The SBPB bit in MSR_IA32_PRED_CMD is supported only after a microcode patch has been applied so set X86_FEATURE_SBPB only then. Otherwise, guests would attempt to set that bit and #GP on the MSR write. While at it, make SMT detection more robust as some guests - depending on how and what CPUID leafs their report - lead to cpu_smt_control getting set to CPU_SMT_NOT_SUPPORTED but SRSO_NO should be set for any guest incarnation where one simply cannot do SMT, for whatever reason. Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation") Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Reported-by: Salvatore Bonaccorso <carnil@debian.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-29x86/srso: Fix return thunks in generated codeJosh Poimboeuf
Set X86_FEATURE_RETHUNK when enabling the SRSO mitigation so that generated code (e.g., ftrace, static call, eBPF) generates "jmp __x86_return_thunk" instead of RET. [ bp: Add a comment. ] Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation") Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-27x86/srso: Add IBPB on VMEXITBorislav Petkov (AMD)
Add the option to flush IBPB only on VMEXIT in order to protect from malicious guests but one otherwise trusts the software that runs on the hypervisor. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-27x86/srso: Add IBPBBorislav Petkov (AMD)
Add the option to mitigate using IBPB on a kernel entry. Pull in the Retbleed alternative so that the IBPB call from there can be used. Also, if Retbleed mitigation is done using IBPB, the same mitigation can and must be used here. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-27x86/srso: Add SRSO_NO supportBorislav Petkov (AMD)
Add support for the CPUID flag which denotes that the CPU is not affected by SRSO. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-27x86/srso: Add IBPB_BRTYPE supportBorislav Petkov (AMD)
Add support for the synthetic CPUID flag which "if this bit is 1, it indicates that MSR 49h (PRED_CMD) bit 0 (IBPB) flushes all branch type predictions from the CPU branch predictor." This flag is there so that this capability in guests can be detected easily (otherwise one would have to track microcode revisions which is impossible for guests). It is also needed only for Zen3 and -4. The other two (Zen1 and -2) always flush branch type predictions by default. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-27x86/srso: Add a Speculative RAS Overflow mitigationBorislav Petkov (AMD)
Add a mitigation for the speculative return address stack overflow vulnerability found on AMD processors. The mitigation works by ensuring all RET instructions speculate to a controlled location, similar to how speculation is controlled in the retpoline sequence. To accomplish this, the __x86_return_thunk forces the CPU to mispredict every function return using a 'safe return' sequence. To ensure the safety of this mitigation, the kernel must ensure that the safe return sequence is itself free from attacker interference. In Zen3 and Zen4, this is accomplished by creating a BTB alias between the untraining function srso_untrain_ret_alias() and the safe return function srso_safe_ret_alias() which results in evicting a potentially poisoned BTB entry and using that safe one for all function returns. In older Zen1 and Zen2, this is accomplished using a reinterpretation technique similar to Retbleed one: srso_untrain_ret() and srso_safe_ret(). Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-22x86/cpu: Enable STIBP on AMD if Automatic IBRS is enabledKim Phillips
Unlike Intel's Enhanced IBRS feature, AMD's Automatic IBRS does not provide protection to processes running at CPL3/user mode, see section "Extended Feature Enable Register (EFER)" in the APM v2 at https://bugzilla.kernel.org/attachment.cgi?id=304652 Explicitly enable STIBP to protect against cross-thread CPL3 branch target injections on systems with Automatic IBRS enabled. Also update the relevant documentation. Fixes: e7862eda309e ("x86/cpu: Support AMD Automatic IBRS") Reported-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20230720194727.67022-1-kim.phillips@amd.com
2023-07-21KVM: Add GDS_NO support to KVMDaniel Sneddon
Gather Data Sampling (GDS) is a transient execution attack using gather instructions from the AVX2 and AVX512 extensions. This attack allows malicious code to infer data that was previously stored in vector registers. Systems that are not vulnerable to GDS will set the GDS_NO bit of the IA32_ARCH_CAPABILITIES MSR. This is useful for VM guests that may think they are on vulnerable systems that are, in fact, not affected. Guests that are running on affected hosts where the mitigation is enabled are protected as if they were running on an unaffected system. On all hosts that are not affected or that are mitigated, set the GDS_NO bit. Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
2023-07-21x86/speculation: Add Kconfig option for GDSDaniel Sneddon
Gather Data Sampling (GDS) is mitigated in microcode. However, on systems that haven't received the updated microcode, disabling AVX can act as a mitigation. Add a Kconfig option that uses the microcode mitigation if available and disables AVX otherwise. Setting this option has no effect on systems not affected by GDS. This is the equivalent of setting gather_data_sampling=force. Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
2023-07-21x86/speculation: Add force option to GDS mitigationDaniel Sneddon
The Gather Data Sampling (GDS) vulnerability allows malicious software to infer stale data previously stored in vector registers. This may include sensitive data such as cryptographic keys. GDS is mitigated in microcode, and systems with up-to-date microcode are protected by default. However, any affected system that is running with older microcode will still be vulnerable to GDS attacks. Since the gather instructions used by the attacker are part of the AVX2 and AVX512 extensions, disabling these extensions prevents gather instructions from being executed, thereby mitigating the system from GDS. Disabling AVX2 is sufficient, but we don't have the granularity to do this. The XCR0[2] disables AVX, with no option to just disable AVX2. Add a kernel parameter gather_data_sampling=force that will enable the microcode mitigation if available, otherwise it will disable AVX on affected systems. This option will be ignored if cmdline mitigations=off. This is a *big* hammer. It is known to break buggy userspace that uses incomplete, buggy AVX enumeration. Unfortunately, such userspace does exist in the wild: https://www.mail-archive.com/bug-coreutils@gnu.org/msg33046.html [ dhansen: add some more ominous warnings about disabling AVX ] Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
2023-07-19x86/speculation: Add Gather Data Sampling mitigationDaniel Sneddon
Gather Data Sampling (GDS) is a hardware vulnerability which allows unprivileged speculative access to data which was previously stored in vector registers. Intel processors that support AVX2 and AVX512 have gather instructions that fetch non-contiguous data elements from memory. On vulnerable hardware, when a gather instruction is transiently executed and encounters a fault, stale data from architectural or internal vector registers may get transiently stored to the destination vector register allowing an attacker to infer the stale data using typical side channel techniques like cache timing attacks. This mitigation is different from many earlier ones for two reasons. First, it is enabled by default and a bit must be set to *DISABLE* it. This is the opposite of normal mitigation polarity. This means GDS can be mitigated simply by updating microcode and leaving the new control bit alone. Second, GDS has a "lock" bit. This lock bit is there because the mitigation affects the hardware security features KeyLocker and SGX. It needs to be enabled and *STAY* enabled for these features to be mitigated against GDS. The mitigation is enabled in the microcode by default. Disable it by setting gather_data_sampling=off or by disabling all mitigations with mitigations=off. The mitigation status can be checked by reading: /sys/devices/system/cpu/vulnerabilities/gather_data_sampling Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
2023-06-16x86/cpu: Switch to arch_cpu_finalize_init()Thomas Gleixner
check_bugs() is a dumping ground for finalizing the CPU bringup. Only parts of it has to do with actual CPU bugs. Split it apart into arch_cpu_finalize_init() and cpu_select_mitigations(). Fixup the bogus 32bit comments while at it. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230613224545.019583869@linutronix.de
2023-03-16x86/CPU/AMD: Make sure EFER[AIBRSE] is setBorislav Petkov (AMD)
The AutoIBRS bit gets set only on the BSP as part of determining which mitigation to enable on AMD. Setting on the APs relies on the circumstance that the APs get booted through the trampoline and EFER - the MSR which contains that bit - gets replicated on every AP from the BSP. However, this can change in the future and considering the security implications of this bit not being set on every CPU, make sure it is set by verifying EFER later in the boot process and on every AP. Reported-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/r/20230224185257.o3mcmloei5zqu7wa@treble
2023-02-27x86/speculation: Allow enabling STIBP with legacy IBRSKP Singh
When plain IBRS is enabled (not enhanced IBRS), the logic in spectre_v2_user_select_mitigation() determines that STIBP is not needed. The IBRS bit implicitly protects against cross-thread branch target injection. However, with legacy IBRS, the IBRS bit is cleared on returning to userspace for performance reasons which leaves userspace threads vulnerable to cross-thread branch target injection against which STIBP protects. Exclude IBRS from the spectre_v2_in_ibrs_mode() check to allow for enabling STIBP (through seccomp/prctl() by default or always-on, if selected by spectre_v2_user kernel cmdline parameter). [ bp: Massage. ] Fixes: 7c693f54c873 ("x86/speculation: Add spectre_v2=ibrs option to support Kernel IBRS") Reported-by: José Oliveira <joseloliveira11@gmail.com> Reported-by: Rodrigo Branco <rodrigo@kernelhacking.com> Signed-off-by: KP Singh <kpsingh@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20230220120127.1975241-1-kpsingh@kernel.org Link: https://lore.kernel.org/r/20230221184908.2349578-1-kpsingh@kernel.org
2023-02-21Merge tag 'x86_cpu_for_v6.3_rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpuid updates from Borislav Petkov: - Cache the AMD debug registers in per-CPU variables to avoid MSR writes where possible, when supporting a debug registers swap feature for SEV-ES guests - Add support for AMD's version of eIBRS called Automatic IBRS which is a set-and-forget control of indirect branch restriction speculation resources on privilege change - Add support for a new x86 instruction - LKGS - Load kernel GS which is part of the FRED infrastructure - Reset SPEC_CTRL upon init to accomodate use cases like kexec which rediscover - Other smaller fixes and cleanups * tag 'x86_cpu_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/amd: Cache debug register values in percpu variables KVM: x86: Propagate the AMD Automatic IBRS feature to the guest x86/cpu: Support AMD Automatic IBRS x86/cpu, kvm: Add the SMM_CTL MSR not present feature x86/cpu, kvm: Add the Null Selector Clears Base feature x86/cpu, kvm: Move X86_FEATURE_LFENCE_RDTSC to its native leaf x86/cpu, kvm: Add the NO_NESTED_DATA_BP feature KVM: x86: Move open-coded CPUID leaf 0x80000021 EAX bit propagation code x86/cpu, kvm: Add support for CPUID_80000021_EAX x86/gsseg: Add the new <asm/gsseg.h> header to <asm/asm-prototypes.h> x86/gsseg: Use the LKGS instruction if available for load_gs_index() x86/gsseg: Move load_gs_index() to its own new header file x86/gsseg: Make asm_load_gs_index() take an u16 x86/opcode: Add the LKGS instruction to x86-opcode-map x86/cpufeature: Add the CPU feature bit for LKGS x86/bugs: Reset speculation control settings on init x86/cpu: Remove redundant extern x86_read_arch_cap_msr()
2023-01-31Merge tag 'v6.2-rc6' into sched/core, to pick up fixesIngo Molnar
Pick up fixes before merging another batch of cpuidle updates. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-01-25x86/cpu: Support AMD Automatic IBRSKim Phillips
The AMD Zen4 core supports a new feature called Automatic IBRS. It is a "set-and-forget" feature that means that, like Intel's Enhanced IBRS, h/w manages its IBRS mitigation resources automatically across CPL transitions. The feature is advertised by CPUID_Fn80000021_EAX bit 8 and is enabled by setting MSR C000_0080 (EFER) bit 21. Enable Automatic IBRS by default if the CPU feature is present. It typically provides greater performance over the incumbent generic retpolines mitigation. Reuse the SPECTRE_V2_EIBRS spectre_v2_mitigation enum. AMD Automatic IBRS and Intel Enhanced IBRS have similar enablement. Add NO_EIBRS_PBRSB to cpu_vuln_whitelist, since AMD Automatic IBRS isn't affected by PBRSB-eIBRS. The kernel command line option spectre_v2=eibrs is used to select AMD Automatic IBRS, if available. Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Sean Christopherson <seanjc@google.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/r/20230124163319.2277355-8-kim.phillips@amd.com
2023-01-13cpuidle, intel_idle: Fix CPUIDLE_FLAG_IBRSPeter Zijlstra
objtool to the rescue: vmlinux.o: warning: objtool: intel_idle_ibrs+0x17: call to spec_ctrl_current() leaves .noinstr.text section vmlinux.o: warning: objtool: intel_idle_ibrs+0x27: call to wrmsrl.constprop.0() leaves .noinstr.text section Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Tony Lindgren <tony@atomide.com> Tested-by: Ulf Hansson <ulf.hansson@linaro.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20230112195540.556912863@infradead.org
2023-01-12x86/bugs: Reset speculation control settings on initBreno Leitao
Currently, x86_spec_ctrl_base is read at boot time and speculative bits are set if Kconfig items are enabled. For example, IBRS is enabled if CONFIG_CPU_IBRS_ENTRY is configured, etc. These MSR bits are not cleared if the mitigations are disabled. This is a problem when kexec-ing a kernel that has the mitigation disabled from a kernel that has the mitigation enabled. In this case, the MSR bits are not cleared during the new kernel boot. As a result, this might have some performance degradation that is hard to pinpoint. This problem does not happen if the machine is (hard) rebooted because the bit will be cleared by default. [ bp: Massage. ] Suggested-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20221128153148.1129350-1-leitao@debian.org
2023-01-10x86/cpu: Remove redundant extern x86_read_arch_cap_msr()Ashok Raj
The prototype for the x86_read_arch_cap_msr() function has moved to arch/x86/include/asm/cpu.h - kill the redundant definition in arch/x86/kernel/cpu.h and include the header. Signed-off-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Link: https://lore.kernel.org/r/20221128172451.792595-1-ashok.raj@intel.com
2023-01-04x86/bugs: Flush IBP in ib_prctl_set()Rodrigo Branco
We missed the window between the TIF flag update and the next reschedule. Signed-off-by: Rodrigo Branco <bsdaemon@google.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: <stable@vger.kernel.org>
2022-12-14Merge tag 'x86_core_for_v6.2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 core updates from Borislav Petkov: - Add the call depth tracking mitigation for Retbleed which has been long in the making. It is a lighterweight software-only fix for Skylake-based cores where enabling IBRS is a big hammer and causes a significant performance impact. What it basically does is, it aligns all kernel functions to 16 bytes boundary and adds a 16-byte padding before the function, objtool collects all functions' locations and when the mitigation gets applied, it patches a call accounting thunk which is used to track the call depth of the stack at any time. When that call depth reaches a magical, microarchitecture-specific value for the Return Stack Buffer, the code stuffs that RSB and avoids its underflow which could otherwise lead to the Intel variant of Retbleed. This software-only solution brings a lot of the lost performance back, as benchmarks suggest: https://lore.kernel.org/all/20220915111039.092790446@infradead.org/ That page above also contains a lot more detailed explanation of the whole mechanism - Implement a new control flow integrity scheme called FineIBT which is based on the software kCFI implementation and uses hardware IBT support where present to annotate and track indirect branches using a hash to validate them - Other misc fixes and cleanups * tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits) x86/paravirt: Use common macro for creating simple asm paravirt functions x86/paravirt: Remove clobber bitmask from .parainstructions x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit x86/Kconfig: Enable kernel IBT by default x86,pm: Force out-of-line memcpy() objtool: Fix weak hole vs prefix symbol objtool: Optimize elf_dirty_reloc_sym() x86/cfi: Add boot time hash randomization x86/cfi: Boot time selection of CFI scheme x86/ibt: Implement FineIBT objtool: Add --cfi to generate the .cfi_sites section x86: Add prefix symbols for function padding objtool: Add option to generate prefix symbols objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf objtool: Slice up elf_create_section_symbol() kallsyms: Revert "Take callthunks into account" x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces x86/retpoline: Fix crash printing warning x86/paravirt: Fix a !PARAVIRT build warning ...
2022-12-13Merge tag 'x86_cpu_for_v6.2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpu updates from Borislav Petkov: - Split MTRR and PAT init code to accomodate at least Xen PV and TDX guests which do not get MTRRs exposed but only PAT. (TDX guests do not support the cache disabling dance when setting up MTRRs so they fall under the same category) This is a cleanup work to remove all the ugly workarounds for such guests and init things separately (Juergen Gross) - Add two new Intel CPUs to the list of CPUs with "normal" Energy Performance Bias, leading to power savings - Do not do bus master arbitration in C3 (ARB_DISABLE) on modern Centaur CPUs * tag 'x86_cpu_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits) x86/mtrr: Make message for disabled MTRRs more descriptive x86/pat: Handle TDX guest PAT initialization x86/cpuid: Carve out all CPUID functionality x86/cpu: Switch to cpu_feature_enabled() for X86_FEATURE_XENPV x86/cpu: Remove X86_FEATURE_XENPV usage in setup_cpu_entry_area() x86/cpu: Drop 32-bit Xen PV guest code in update_task_stack() x86/cpu: Remove unneeded 64-bit dependency in arch_enter_from_user_mode() x86/cpufeatures: Add X86_FEATURE_XENPV to disabled-features.h x86/acpi/cstate: Optimize ARB_DISABLE on Centaur CPUs x86/mtrr: Simplify mtrr_ops initialization x86/cacheinfo: Switch cache_ap_init() to hotplug callback x86: Decouple PAT and MTRR handling x86/mtrr: Add a stop_machine() handler calling only cache_cpu_init() x86/mtrr: Let cache_aps_delayed_init replace mtrr_aps_delayed_init x86/mtrr: Get rid of __mtrr_enabled bool x86/mtrr: Simplify mtrr_bp_init() x86/mtrr: Remove set_all callback from struct mtrr_ops x86/mtrr: Disentangle MTRR init from PAT init x86/mtrr: Move cache control code to cacheinfo.c x86/mtrr: Split MTRR-specific handling from cache dis/enabling ...
2022-12-02x86/bugs: Make sure MSR_SPEC_CTRL is updated properly upon resume from S3Pawan Gupta
The "force" argument to write_spec_ctrl_current() is currently ambiguous as it does not guarantee the MSR write. This is due to the optimization that writes to the MSR happen only when the new value differs from the cached value. This is fine in most cases, but breaks for S3 resume when the cached MSR value gets out of sync with the hardware MSR value due to S3 resetting it. When x86_spec_ctrl_current is same as x86_spec_ctrl_base, the MSR write is skipped. Which results in SPEC_CTRL mitigations not getting restored. Move the MSR write from write_spec_ctrl_current() to a new function that unconditionally writes to the MSR. Update the callers accordingly and rename functions. [ bp: Rework a bit. ] Fixes: caa0ff24d5d0 ("x86/bugs: Keep a per-CPU IA32_SPEC_CTRL value") Suggested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@kernel.org> Link: https://lore.kernel.org/r/806d39b0bfec2fe8f50dc5446dff20f5bb24a959.1669821572.git.pawan.kumar.gupta@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-11-22x86/cpu: Switch to cpu_feature_enabled() for X86_FEATURE_XENPVJuergen Gross
Convert the remaining cases of static_cpu_has(X86_FEATURE_XENPV) and boot_cpu_has(X86_FEATURE_XENPV) to use cpu_feature_enabled(), allowing more efficient code in case the kernel is configured without CONFIG_XEN_PV. Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/r/20221104072701.20283-6-jgross@suse.com
2022-11-21Merge tag 'v6.1-rc6' into x86/core, to resolve conflictsIngo Molnar
Resolve conflicts between these commits in arch/x86/kernel/asm-offsets.c: # upstream: debc5a1ec0d1 ("KVM: x86: use a separate asm-offsets.c file") # retbleed work in x86/core: 5d8213864ade ("x86/retbleed: Add SKL return thunk") ... and these commits in include/linux/bpf.h: # upstram: 18acb7fac22f ("bpf: Revert ("Fix dispatcher patchable function entry to 5 bytes nop")") # x86/core commits: 931ab63664f0 ("x86/ibt: Implement FineIBT") bea75b33895f ("x86/Kconfig: Introduce function padding") The latter two modify BPF_DISPATCHER_ATTRIBUTES(), which was removed upstream. Conflicts: arch/x86/kernel/asm-offsets.c include/linux/bpf.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-11-09x86, KVM: remove unnecessary argument to x86_virt_spec_ctrl and callersPaolo Bonzini
x86_virt_spec_ctrl only deals with the paravirtualized MSR_IA32_VIRT_SPEC_CTRL now and does not handle MSR_IA32_SPEC_CTRL anymore; remove the corresponding, unused argument. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: move MSR_IA32_SPEC_CTRL save/restore to assemblyPaolo Bonzini
Restoration of the host IA32_SPEC_CTRL value is probably too late with respect to the return thunk training sequence. With respect to the user/kernel boundary, AMD says, "If software chooses to toggle STIBP (e.g., set STIBP on kernel entry, and clear it on kernel exit), software should set STIBP to 1 before executing the return thunk training sequence." I assume the same requirements apply to the guest/host boundary. The return thunk training sequence is in vmenter.S, quite close to the VM-exit. On hosts without V_SPEC_CTRL, however, the host's IA32_SPEC_CTRL value is not restored until much later. To avoid this, move the restoration of host SPEC_CTRL to assembly and, for consistency, move the restoration of the guest SPEC_CTRL as well. This is not particularly difficult, apart from some care to cover both 32- and 64-bit, and to share code between SEV-ES and normal vmentry. Cc: stable@vger.kernel.org Fixes: a149180fbcf3 ("x86: Add magic AMD return-thunk") Suggested-by: Jim Mattson <jmattson@google.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-10-17x86/bugs: Add retbleed=forcePeter Zijlstra (Intel)
Debug aid, allows running retbleed=force,stuff on non-affected uarchs Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2022-10-17x86/retbleed: Add call depth tracking mitigationThomas Gleixner
The fully secure mitigation for RSB underflow on Intel SKL CPUs is IBRS, which inflicts up to 30% penalty for pathological syscall heavy work loads. Software based call depth tracking and RSB refill is not perfect, but reduces the attack surface massively. The penalty for the pathological case is about 8% which is still annoying but definitely more palatable than IBRS. Add a retbleed=stuff command line option to enable the call depth tracking and software refill of the RSB. This gives admins a choice. IBeeRS are safe and cause headaches, call depth tracking is considered to be s(t)ufficiently safe. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111149.029587352@infradead.org
2022-10-17x86/bugs: Use sysfs_emit()Borislav Petkov
Those mitigations are very talkative; use the printing helper which pays attention to the buffer size. Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20220809153419.10182-1-bp@alien8.de
2022-08-18x86/bugs: Add "unknown" reporting for MMIO Stale DataPawan Gupta
Older Intel CPUs that are not in the affected processor list for MMIO Stale Data vulnerabilities currently report "Not affected" in sysfs, which may not be correct. Vulnerability status for these older CPUs is unknown. Add known-not-affected CPUs to the whitelist. Report "unknown" mitigation status for CPUs that are not in blacklist, whitelist and also don't enumerate MSR ARCH_CAPABILITIES bits that reflect hardware immunity to MMIO Stale Data vulnerabilities. Mitigation is not deployed when the status is unknown. [ bp: Massage, fixup. ] Fixes: 8d50cdf8b834 ("x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data") Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com> Suggested-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/a932c154772f2121794a5f2eded1a11013114711.1657846269.git.pawan.kumar.gupta@linux.intel.com
2022-08-13Merge tag 'x86-urgent-2022-08-13' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fix from Ingo Molnar: "Fix the 'IBPB mitigated RETBleed' mode of operation on AMD CPUs (not turned on by default), which also need STIBP enabled (if available) to be '100% safe' on even the shortest speculation windows" * tag 'x86-urgent-2022-08-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/bugs: Enable STIBP for IBPB mitigated RETBleed
2022-08-08x86/bugs: Enable STIBP for IBPB mitigated RETBleedKim Phillips
AMD's "Technical Guidance for Mitigating Branch Type Confusion, Rev. 1.0 2022-07-12" whitepaper, under section 6.1.2 "IBPB On Privileged Mode Entry / SMT Safety" says: Similar to the Jmp2Ret mitigation, if the code on the sibling thread cannot be trusted, software should set STIBP to 1 or disable SMT to ensure SMT safety when using this mitigation. So, like already being done for retbleed=unret, and now also for retbleed=ibpb, force STIBP on machines that have it, and report its SMT vulnerability status accordingly. [ bp: Remove the "we" and remove "[AMD]" applicability parameter which doesn't work here. ] Fixes: 3ebc17006888 ("x86/bugs: Add retbleed=ibpb") Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: stable@vger.kernel.org # 5.10, 5.15, 5.19 Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537 Link: https://lore.kernel.org/r/20220804192201.439596-1-kim.phillips@amd.com
2022-08-03x86/speculation: Add RSB VM Exit protectionsDaniel Sneddon
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as documented for RET instructions after VM exits. Mitigate it with a new one-entry RSB stuffing mechanism and a new LFENCE. == Background == Indirect Branch Restricted Speculation (IBRS) was designed to help mitigate Branch Target Injection and Speculative Store Bypass, i.e. Spectre, attacks. IBRS prevents software run in less privileged modes from affecting branch prediction in more privileged modes. IBRS requires the MSR to be written on every privilege level change. To overcome some of the performance issues of IBRS, Enhanced IBRS was introduced. eIBRS is an "always on" IBRS, in other words, just turn it on once instead of writing the MSR on every privilege level change. When eIBRS is enabled, more privileged modes should be protected from less privileged modes, including protecting VMMs from guests. == Problem == Here's a simplification of how guests are run on Linux' KVM: void run_kvm_guest(void) { // Prepare to run guest VMRESUME(); // Clean up after guest runs } The execution flow for that would look something like this to the processor: 1. Host-side: call run_kvm_guest() 2. Host-side: VMRESUME 3. Guest runs, does "CALL guest_function" 4. VM exit, host runs again 5. Host might make some "cleanup" function calls 6. Host-side: RET from run_kvm_guest() Now, when back on the host, there are a couple of possible scenarios of post-guest activity the host needs to do before executing host code: * on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not touched and Linux has to do a 32-entry stuffing. * on eIBRS hardware, VM exit with IBRS enabled, or restoring the host IBRS=1 shortly after VM exit, has a documented side effect of flushing the RSB except in this PBRSB situation where the software needs to stuff the last RSB entry "by hand". IOW, with eIBRS supported, host RET instructions should no longer be influenced by guest behavior after the host retires a single CALL instruction. However, if the RET instructions are "unbalanced" with CALLs after a VM exit as is the RET in #6, it might speculatively use the address for the instruction after the CALL in #3 as an RSB prediction. This is a problem since the (untrusted) guest controls this address. Balanced CALL/RET instruction pairs such as in step #5 are not affected. == Solution == The PBRSB issue affects a wide variety of Intel processors which support eIBRS. But not all of them need mitigation. Today, X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e., eIBRS systems which enable legacy IBRS explicitly. However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT and most of them need a new mitigation. Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT. The lighter-weight mitigation performs a CALL instruction which is immediately followed by a speculative execution barrier (INT3). This steers speculative execution to the barrier -- just like a retpoline -- which ensures that speculation can never reach an unbalanced RET. Then, ensure this CALL is retired before continuing execution with an LFENCE. In other words, the window of exposure is opened at VM exit where RET behavior is troublesome. While the window is open, force RSB predictions sampling for RET targets to a dead end at the INT3. Close the window with the LFENCE. There is a subset of eIBRS systems which are not vulnerable to PBRSB. Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB. Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO. [ bp: Massage, incorporate review comments from Andy Cooper. ] Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-07-29x86/bugs: Do not enable IBPB at firmware entry when IBPB is not availableThadeu Lima de Souza Cascardo
Some cloud hypervisors do not provide IBPB on very recent CPU processors, including AMD processors affected by Retbleed. Using IBPB before firmware calls on such systems would cause a GPF at boot like the one below. Do not enable such calls when IBPB support is not present. EFI Variables Facility v0.08 2004-May-17 general protection fault, maybe for address 0x1: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 24 Comm: kworker/u2:1 Not tainted 5.19.0-rc8+ #7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015 Workqueue: efi_rts_wq efi_call_rts RIP: 0010:efi_call_rts Code: e8 37 33 58 ff 41 bf 48 00 00 00 49 89 c0 44 89 f9 48 83 c8 01 4c 89 c2 48 c1 ea 20 66 90 b9 49 00 00 00 b8 01 00 00 00 31 d2 <0f> 30 e8 7b 9f 5d ff e8 f6 f8 ff ff 4c 89 f1 4c 89 ea 4c 89 e6 48 RSP: 0018:ffffb373800d7e38 EFLAGS: 00010246 RAX: 0000000000000001 RBX: 0000000000000006 RCX: 0000000000000049 RDX: 0000000000000000 RSI: ffff94fbc19d8fe0 RDI: ffff94fbc1b2b300 RBP: ffffb373800d7e70 R08: 0000000000000000 R09: 0000000000000000 R10: 000000000000000b R11: 000000000000000b R12: ffffb3738001fd78 R13: ffff94fbc2fcfc00 R14: ffffb3738001fd80 R15: 0000000000000048 FS: 0000000000000000(0000) GS:ffff94fc3da00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff94fc30201000 CR3: 000000006f610000 CR4: 00000000000406f0 Call Trace: <TASK> ? __wake_up process_one_work worker_thread ? rescuer_thread kthread ? kthread_complete_and_exit ret_from_fork </TASK> Modules linked in: Fixes: 28a99e95f55c ("x86/amd: Use IBPB for firmware calls") Reported-by: Dimitri John Ledkov <dimitri.ledkov@canonical.com> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20220728122602.2500509-1-cascardo@canonical.com
2022-07-20x86/bugs: Warn when "ibrs" mitigation is selected on Enhanced IBRS partsPawan Gupta
IBRS mitigation for spectre_v2 forces write to MSR_IA32_SPEC_CTRL at every kernel entry/exit. On Enhanced IBRS parts setting MSR_IA32_SPEC_CTRL[IBRS] only once at boot is sufficient. MSR writes at every kernel entry/exit incur unnecessary performance loss. When Enhanced IBRS feature is present, print a warning about this unnecessary performance loss. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/2a5eaf54583c2bfe0edc4fea64006656256cca17.1657814857.git.pawan.kumar.gupta@linux.intel.com
2022-07-18x86/amd: Use IBPB for firmware callsPeter Zijlstra
On AMD IBRS does not prevent Retbleed; as such use IBPB before a firmware call to flush the branch history state. And because in order to do an EFI call, the kernel maps a whole lot of the kernel page table into the EFI page table, do an IBPB just in case in order to prevent the scenario of poisoning the BTB and causing an EFI call using the unprotected RET there. [ bp: Massage. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20220715194550.793957-1-cascardo@canonical.com
2022-07-16x86/bugs: Remove apostrophe typoKim Phillips
Remove a superfluous ' in the mitigation string. Fixes: e8ec1b6e08a2 ("x86/bugs: Enable STIBP for JMP2RET") Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-07-14x86/bugs: Mark retbleed_strings staticJiapeng Chong
This symbol is not used outside of bugs.c, so mark it static. Reported-by: Abaci Robot <abaci@linux.alibaba.com> Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20220714072939.71162-1-jiapeng.chong@linux.alibaba.com