1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
|
#include "bcache.h"
#include "bkey_methods.h"
#include "btree_cache.h"
#include "btree_update.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "buckets.h"
#include "checksum.h"
#include "debug.h"
#include "error.h"
#include "extents.h"
#include "io.h"
#include "journal.h"
#include <trace/events/bcache.h>
static void btree_node_sort(struct cache_set *c, struct btree *b,
struct btree_iter *iter, unsigned from,
struct btree_node_iter *node_iter,
btree_keys_sort_fn sort, bool is_write_locked)
{
struct btree_node *out;
bool used_mempool = false;
unsigned order = b->keys.page_order;
struct btree_nr_keys nr;
if (from) {
struct bset_tree *t;
unsigned u64s = 0;
for (t = b->keys.set + from;
t <= b->keys.set + b->keys.nsets; t++)
u64s += le16_to_cpu(t->data->u64s);
order = get_order(__set_bytes(b->data, u64s));
}
out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, order);
if (!out) {
struct page *outp;
outp = mempool_alloc(&c->sort.pool, GFP_NOIO);
out = page_address(outp);
used_mempool = true;
}
nr = bch_sort_bsets(&out->keys, &b->keys, from,
node_iter, sort, &c->sort);
if (!is_write_locked)
__btree_node_lock_write(b, iter);
if (!from) {
unsigned u64s = le16_to_cpu(out->keys.u64s);
BUG_ON(order != b->keys.page_order);
/*
* Our temporary buffer is the same size as the btree node's
* buffer, we can just swap buffers instead of doing a big
* memcpy()
*/
*out = *b->data;
out->keys.u64s = cpu_to_le16(u64s);
swap(out, b->data);
b->keys.set->data = &b->data->keys;
} else {
b->keys.set[from].data->u64s = out->keys.u64s;
memcpy(b->keys.set[from].data->start, out->keys.start,
(void *) bset_bkey_last(&out->keys) -
(void *) out->keys.start);
}
b->keys.nsets = from;
b->keys.nr = nr;
bch_bset_build_written_tree(&b->keys);
if (!is_write_locked)
__btree_node_unlock_write(b, iter);
if (used_mempool)
mempool_free(virt_to_page(out), &c->sort.pool);
else
free_pages((unsigned long) out, order);
bch_verify_btree_nr_keys(&b->keys);
}
#define SORT_CRIT (4096 / sizeof(u64))
/*
* We're about to add another bset to the btree node, so if there's currently
* too many bsets - sort some of them together:
*/
static bool btree_node_compact(struct cache_set *c, struct btree *b,
struct btree_iter *iter)
{
unsigned crit = SORT_CRIT;
int i = 0;
/* Don't sort if nothing to do */
if (!b->keys.nsets)
goto nosort;
/* If not a leaf node, always sort */
if (b->level)
goto sort;
for (i = b->keys.nsets - 1; i >= 0; --i) {
crit *= c->sort.crit_factor;
if (le16_to_cpu(b->keys.set[i].data->u64s) < crit)
goto sort;
}
/* Sort if we'd overflow */
if (b->keys.nsets + 1 == MAX_BSETS) {
i = 0;
goto sort;
}
nosort:
__btree_node_lock_write(b, iter);
bch_bset_build_written_tree(&b->keys);
__btree_node_unlock_write(b, iter);
return false;
sort:
btree_node_sort(c, b, iter, i, NULL, NULL, false);
return true;
}
/*
* @bch_btree_init_next - initialize a new (unwritten) bset that can then be
* inserted into
*
* Safe to call if there already is an unwritten bset - will only add a new bset
* if @b doesn't already have one.
*
* Returns true if we sorted (i.e. invalidated iterators
*/
void bch_btree_init_next(struct cache_set *c, struct btree *b,
struct btree_iter *iter)
{
bool did_sort;
BUG_ON(iter && iter->nodes[b->level] != b);
did_sort = btree_node_compact(c, b, iter);
/* do verify if we sorted down to a single set: */
if (did_sort && !b->keys.nsets)
bch_btree_verify(c, b);
if (b->written < c->sb.btree_node_size) {
__btree_node_lock_write(b, iter);
bch_bset_init_next(&b->keys, &write_block(b)->keys);
__btree_node_unlock_write(b, iter);
}
if (iter && did_sort)
bch_btree_iter_reinit_node(iter, b);
}
/*
* We seed the checksum with the entire first pointer (dev, gen and offset),
* since for btree nodes we have to store the checksum with the data instead of
* the pointer - this helps guard against reading a valid btree node that is not
* the node we actually wanted:
*/
#define btree_csum_set(_b, _i) \
({ \
void *_data = (void *) (_i) + 8; \
void *_end = bset_bkey_last(&(_i)->keys); \
\
bch_checksum_update(BSET_CSUM_TYPE(&(_i)->keys), \
bkey_i_to_extent_c(&(_b)->key)->v._data[0], \
_data, \
_end - _data) ^ 0xffffffffffffffffULL; \
})
#define btree_node_error(b, c, ptr, fmt, ...) \
cache_set_inconsistent(c, \
"btree node error at btree %u level %u/%u bucket %zu block %u u64s %u: " fmt,\
(b)->btree_id, (b)->level, btree_node_root(b) \
? btree_node_root(b)->level : -1, \
PTR_BUCKET_NR(ca, ptr), (b)->written, \
(i)->u64s, ##__VA_ARGS__)
static const char *validate_bset(struct cache_set *c, struct btree *b,
struct cache *ca,
const struct bch_extent_ptr *ptr,
struct bset *i, unsigned sectors)
{
struct bkey_format *f = &b->keys.format;
struct bkey_packed *k;
if (le16_to_cpu(i->version) != BCACHE_BSET_VERSION)
return "unsupported bset version";
if (b->written + sectors > c->sb.btree_node_size)
return "bset past end of btree node";
if (i != &b->data->keys && !i->u64s)
btree_node_error(b, c, ptr, "empty set");
for (k = i->start;
k != bset_bkey_last(i);) {
struct bkey_s_c u;
struct bkey tmp;
const char *invalid;
if (!k->u64s) {
btree_node_error(b, c, ptr,
"KEY_U64s 0: %zu bytes of metadata lost",
(void *) bset_bkey_last(i) - (void *) k);
i->u64s = cpu_to_le16((u64 *) k - i->_data);
break;
}
if (bkey_next(k) > bset_bkey_last(i)) {
btree_node_error(b, c, ptr,
"key extends past end of bset");
i->u64s = cpu_to_le16((u64 *) k - i->_data);
break;
}
if (k->format > KEY_FORMAT_CURRENT) {
btree_node_error(b, c, ptr,
"invalid bkey format %u", k->format);
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove(k, bkey_next(k),
(void *) bset_bkey_last(i) - (void *) k);
continue;
}
if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN)
bch_bkey_swab(btree_node_type(b), &b->keys.format, k);
u = bkey_disassemble(f, k, &tmp);
invalid = btree_bkey_invalid(c, b, u);
if (invalid) {
char buf[160];
bch_bkey_val_to_text(c, btree_node_type(b),
buf, sizeof(buf), u);
btree_node_error(b, c, ptr,
"invalid bkey %s", buf);
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove(k, bkey_next(k),
(void *) bset_bkey_last(i) - (void *) k);
continue;
}
k = bkey_next(k);
}
SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
b->written += sectors;
return NULL;
}
void bch_btree_node_read_done(struct cache_set *c, struct btree *b,
struct cache *ca,
const struct bch_extent_ptr *ptr)
{
struct btree_node_entry *bne;
struct bset *i = &b->data->keys;
struct btree_node_iter *iter;
const char *err;
int ret;
iter = mempool_alloc(&c->fill_iter, GFP_NOIO);
__bch_btree_node_iter_init(iter, &b->keys);
err = "dynamic fault";
if (bch_meta_read_fault("btree"))
goto err;
while (b->written < c->sb.btree_node_size) {
unsigned sectors;
if (!b->written) {
i = &b->data->keys;
err = "unknown checksum type";
if (BSET_CSUM_TYPE(i) >= BCH_CSUM_NR)
goto err;
/* XXX: retry checksum errors */
err = "bad checksum";
if (le64_to_cpu(b->data->csum) !=
btree_csum_set(b, b->data))
goto err;
sectors = __set_blocks(b->data,
le16_to_cpu(b->data->keys.u64s),
block_bytes(c)) << c->block_bits;
err = "bad magic";
if (le64_to_cpu(b->data->magic) != bset_magic(&c->disk_sb))
goto err;
err = "bad btree header";
if (!b->data->keys.seq)
goto err;
if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN) {
bch_bpos_swab(&b->data->min_key);
bch_bpos_swab(&b->data->max_key);
}
err = "incorrect max key";
if (bkey_cmp(b->data->max_key, b->key.k.p))
goto err;
err = "incorrect level";
if (BSET_BTREE_LEVEL(i) != b->level)
goto err;
err = bch_bkey_format_validate(&b->data->format);
if (err)
goto err;
b->keys.format = b->data->format;
b->keys.set->data = &b->data->keys;
} else {
bne = write_block(b);
i = &bne->keys;
if (i->seq != b->data->keys.seq)
break;
err = "unknown checksum type";
if (BSET_CSUM_TYPE(i) >= BCH_CSUM_NR)
goto err;
err = "bad checksum";
if (le64_to_cpu(bne->csum) !=
btree_csum_set(b, bne))
goto err;
sectors = __set_blocks(bne,
le16_to_cpu(bne->keys.u64s),
block_bytes(c)) << c->block_bits;
}
err = validate_bset(c, b, ca, ptr, i, sectors);
if (err)
goto err;
err = "insufficient memory";
ret = bch_journal_seq_should_ignore(c, le64_to_cpu(i->journal_seq), b);
if (ret < 0)
goto err;
if (ret)
continue;
bch_btree_node_iter_push(iter, &b->keys,
i->start, bset_bkey_last(i));
}
err = "corrupted btree";
for (bne = write_block(b);
bset_byte_offset(b, bne) < btree_bytes(c);
bne = (void *) bne + block_bytes(c))
if (bne->keys.seq == b->data->keys.seq)
goto err;
btree_node_sort(c, b, NULL, 0, iter,
b->keys.ops->is_extents
? bch_extent_sort_fix_overlapping
: bch_key_sort_fix_overlapping,
true);
err = "short btree key";
if (b->keys.set[0].size &&
bkey_cmp_packed(&b->keys.format, &b->key.k,
&b->keys.set[0].end) < 0)
goto err;
out:
mempool_free(iter, &c->fill_iter);
return;
err:
set_btree_node_read_error(b);
btree_node_error(b, c, ptr, "%s", err);
goto out;
}
static void btree_node_read_endio(struct bio *bio)
{
bch_bbio_endio(to_bbio(bio));
}
void bch_btree_node_read(struct cache_set *c, struct btree *b)
{
uint64_t start_time = local_clock();
struct closure cl;
struct bio *bio;
struct extent_pick_ptr pick;
trace_bcache_btree_read(b);
closure_init_stack(&cl);
pick = bch_btree_pick_ptr(c, b);
if (cache_set_fatal_err_on(!pick.ca, c,
"no cache device for btree node")) {
set_btree_node_read_error(b);
return;
}
percpu_ref_get(&pick.ca->ref);
bio = bio_alloc_bioset(GFP_NOIO, btree_pages(c), &c->btree_read_bio);
bio->bi_rw = REQ_META|READ_SYNC;
bio->bi_iter.bi_size = btree_bytes(c);
bio->bi_end_io = btree_node_read_endio;
bio->bi_private = &cl;
bch_bio_map(bio, b->data);
bio_get(bio);
bch_submit_bbio(to_bbio(bio), pick.ca, &pick.ptr, true);
closure_sync(&cl);
if (cache_fatal_io_err_on(bio->bi_error,
pick.ca, "IO error reading bucket %zu",
PTR_BUCKET_NR(pick.ca, &pick.ptr)) ||
bch_meta_read_fault("btree")) {
set_btree_node_read_error(b);
goto out;
}
bch_btree_node_read_done(c, b, pick.ca, &pick.ptr);
bch_time_stats_update(&c->btree_read_time, start_time);
out:
bio_put(bio);
percpu_ref_put(&pick.ca->ref);
}
int bch_btree_root_read(struct cache_set *c, enum btree_id id,
const struct bkey_i *k, unsigned level)
{
struct closure cl;
struct btree *b;
closure_init_stack(&cl);
while (IS_ERR(b = mca_alloc(c, &cl))) {
BUG_ON(PTR_ERR(b) != -EAGAIN);
closure_sync(&cl);
}
bkey_copy(&b->key, k);
BUG_ON(mca_hash_insert(c, b, level, id));
bch_btree_node_read(c, b);
six_unlock_write(&b->lock);
if (btree_node_read_error(b)) {
six_unlock_intent(&b->lock);
return -EIO;
}
bch_btree_set_root_initial(c, b, NULL);
six_unlock_intent(&b->lock);
return 0;
}
void bch_btree_complete_write(struct cache_set *c, struct btree *b,
struct btree_write *w)
{
journal_pin_drop(&c->journal, &w->journal);
closure_wake_up(&w->wait);
}
static void btree_node_write_unlock(struct closure *cl)
{
struct btree *b = container_of(cl, struct btree, io);
up(&b->io_mutex);
}
static void btree_node_write_done(struct closure *cl)
{
struct btree *b = container_of(cl, struct btree, io);
struct btree_write *w = btree_prev_write(b);
struct cache_set *c = b->c;
/*
* Before calling bch_btree_complete_write() - if the write errored, we
* have to halt new journal writes before they see this btree node
* write as completed:
*/
if (btree_node_write_error(b))
bch_journal_halt(&c->journal);
bch_btree_complete_write(c, b, w);
if (btree_node_dirty(b) && c->btree_flush_delay)
queue_delayed_work(system_freezable_wq, &b->work,
c->btree_flush_delay * HZ);
closure_return_with_destructor(cl, btree_node_write_unlock);
}
static void btree_node_write_endio(struct bio *bio)
{
struct closure *cl = bio->bi_private;
struct btree *b = container_of(cl, struct btree, io);
struct bch_write_bio *wbio = to_wbio(bio);
if (cache_fatal_io_err_on(bio->bi_error, wbio->bio.ca, "btree write") ||
bch_meta_write_fault("btree"))
set_btree_node_write_error(b);
if (wbio->orig)
bio_endio(wbio->orig);
else if (wbio->bounce)
bch_bio_free_pages_pool(b->c, bio);
bch_bbio_endio(to_bbio(bio));
}
static void do_btree_node_write(struct closure *cl)
{
struct btree *b = container_of(cl, struct btree, io);
struct bio *bio;
struct bch_write_bio *wbio;
struct cache_set *c = b->c;
struct bset *i = btree_bset_last(b);
BKEY_PADDED(key) k;
struct bkey_s_extent e;
struct bch_extent_ptr *ptr;
struct cache *ca;
size_t sectors_to_write;
void *data;
trace_bcache_btree_write(b);
BUG_ON(b->written >= c->sb.btree_node_size);
BUG_ON(b->written && !i->u64s);
BUG_ON(btree_bset_first(b)->seq != i->seq);
BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN);
cancel_delayed_work(&b->work);
change_bit(BTREE_NODE_write_idx, &b->flags);
i->version = cpu_to_le16(BCACHE_BSET_VERSION);
SET_BSET_CSUM_TYPE(i, c->opts.metadata_checksum);
if (!b->written) {
BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(&c->disk_sb));
b->data->format = b->keys.format;
data = b->data;
b->data->csum = cpu_to_le64(btree_csum_set(b, b->data));
sectors_to_write = __set_blocks(b->data,
le16_to_cpu(b->data->keys.u64s),
block_bytes(c)) << c->block_bits;
} else {
struct btree_node_entry *bne = write_block(b);
data = bne;
bne->csum = cpu_to_le64(btree_csum_set(b, bne));
sectors_to_write = __set_blocks(bne,
le16_to_cpu(bne->keys.u64s),
block_bytes(c)) << c->block_bits;
}
BUG_ON(b->written + sectors_to_write > c->sb.btree_node_size);
/*
* We handle btree write errors by immediately halting the journal -
* after we've done that, we can't issue any subsequent btree writes
* because they might have pointers to new nodes that failed to write.
*
* Furthermore, there's no point in doing any more btree writes because
* with the journal stopped, we're never going to update the journal to
* reflect that those writes were done and the data flushed from the
* journal:
*
* Make sure to update b->written so bch_btree_init_next() doesn't
* break:
*/
if (bch_journal_error(&c->journal)) {
struct btree_write *w = btree_prev_write(b);
set_btree_node_write_error(b);
b->written += sectors_to_write;
bch_btree_complete_write(c, b, w);
closure_return_with_destructor(cl, btree_node_write_unlock);
}
bio = bio_alloc_bioset(GFP_NOIO, btree_pages(c), &c->bio_write);
wbio = to_wbio(bio);
wbio->orig = NULL;
wbio->bounce = true;
bio->bi_end_io = btree_node_write_endio;
bio->bi_private = cl;
bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
bch_bio_alloc_pages_pool(c, bio, sectors_to_write << 9);
memcpy_to_bio(bio, bio->bi_iter, data);
/*
* If we're appending to a leaf node, we don't technically need FUA -
* this write just needs to be persisted before the next journal write,
* which will be marked FLUSH|FUA.
*
* Similarly if we're writing a new btree root - the pointer is going to
* be in the next journal entry.
*
* But if we're writing a new btree node (that isn't a root) or
* appending to a non leaf btree node, we need either FUA or a flush
* when we write the parent with the new pointer. FUA is cheaper than a
* flush, and writes appending to leaf nodes aren't blocking anything so
* just make all btree node writes FUA to keep things sane.
*/
bkey_copy(&k.key, &b->key);
e = bkey_i_to_s_extent(&k.key);
extent_for_each_ptr(e, ptr)
ptr->offset += b->written;
rcu_read_lock();
extent_for_each_online_device(c, e, ptr, ca)
atomic64_add(sectors_to_write, &ca->btree_sectors_written);
rcu_read_unlock();
b->written += sectors_to_write;
bch_submit_bbio_replicas(wbio, c, &k.key, 0, true);
continue_at(cl, btree_node_write_done, NULL);
}
/*
* Only requires a read lock:
*/
void __bch_btree_node_write(struct btree *b, struct closure *parent,
int idx_to_write)
{
/*
* We may only have a read lock on the btree node - the dirty bit is our
* "lock" against racing with other threads that may be trying to start
* a write, we do a write iff we clear the dirty bit. Since setting the
* dirty bit requires a write lock, we can't race with other threads
* redirtying it:
*/
if (!test_and_clear_bit(BTREE_NODE_dirty, &b->flags))
return;
/*
* io_mutex ensures only a single IO in flight to a btree node at a
* time, and also protects use of the b->io closure.
* do_btree_node_write() will drop it asynchronously.
*/
down(&b->io_mutex);
BUG_ON(!list_empty(&b->write_blocked));
#if 0
/*
* This is an optimization for when journal flushing races with the
* btree node being written for some other reason, and the write the
* journal wanted to flush has already happened - in that case we'd
* prefer not to write a mostly empty bset. It seemed to be buggy,
* though:
*/
if (idx_to_write != -1 &&
idx_to_write != btree_node_write_idx(b)) {
up(&b->io_mutex);
return;
}
#endif
/*
* do_btree_node_write() must not run asynchronously (NULL is passed for
* workqueue) - it needs the lock we have on the btree node
*/
closure_call(&b->io, do_btree_node_write, NULL, parent ?: &b->c->cl);
}
/*
* Use this one if the node is intent locked:
*/
void bch_btree_node_write(struct btree *b, struct closure *parent,
struct btree_iter *iter)
{
__bch_btree_node_write(b, parent, -1);
bch_btree_init_next(b->c, b, iter);
}
static void bch_btree_node_write_dirty(struct btree *b, struct closure *parent)
{
six_lock_read(&b->lock);
BUG_ON(b->level);
__bch_btree_node_write(b, parent, -1);
six_unlock_read(&b->lock);
}
/* buffer up 4k before writing out a bset */
#define BTREE_WRITE_SET_BUFFER (4 << 10)
/*
* Write leaf nodes if the unwritten bset is getting too big:
*/
void bch_btree_node_write_lazy(struct btree *b, struct btree_iter *iter)
{
struct btree_node_entry *bne =
container_of(btree_bset_last(b),
struct btree_node_entry, keys);
unsigned long bytes = __set_bytes(bne, le16_to_cpu(bne->keys.u64s));
if ((max(round_up(bytes, block_bytes(iter->c)),
PAGE_SIZE) - bytes < 48 ||
bytes > BTREE_WRITE_SET_BUFFER) &&
b->io_mutex.count > 0)
bch_btree_node_write(b, NULL, iter);
}
void btree_node_write_work(struct work_struct *w)
{
struct btree *b = container_of(to_delayed_work(w), struct btree, work);
bch_btree_node_write_dirty(b, NULL);
}
/*
* Write all dirty btree nodes to disk, including roots
*/
void bch_btree_flush(struct cache_set *c)
{
struct closure cl;
struct btree *b;
struct bucket_table *tbl;
struct rhash_head *pos;
bool dropped_lock;
unsigned i;
closure_init_stack(&cl);
rcu_read_lock();
do {
dropped_lock = false;
i = 0;
restart:
tbl = rht_dereference_rcu(c->btree_cache_table.tbl,
&c->btree_cache_table);
for (; i < tbl->size; i++)
rht_for_each_entry_rcu(b, pos, tbl, i, hash)
/*
* XXX - locking for b->level, when called from
* bch_journal_move()
*/
if (!b->level && btree_node_dirty(b)) {
rcu_read_unlock();
bch_btree_node_write_dirty(b, &cl);
dropped_lock = true;
rcu_read_lock();
goto restart;
}
} while (dropped_lock);
rcu_read_unlock();
closure_sync(&cl);
}
/**
* bch_btree_node_flush_journal - flush any journal entries that contain keys
* from this node
*
* The bset's journal sequence number is used for preserving ordering of index
* updates across unclean shutdowns - it's used to ignore bsets newer than the
* most recent journal entry.
*
* But when rewriting btree nodes we compact all the bsets in a btree node - and
* if we compacted a bset that should be ignored with bsets we do need, that
* would be bad. So to avoid that, prior to making the new node visible ensure
* that the journal has been flushed so that all the bsets we compacted should
* be visible.
*/
void bch_btree_node_flush_journal_entries(struct cache_set *c,
struct btree *b,
struct closure *cl)
{
int i;
/*
* Journal sequence numbers in the different bsets will always be in
* ascending order, we only need to flush the highest - except that the
* most recent bset might not have a journal sequence number yet, so we
* need to loop:
*/
for (i = b->keys.nsets; i >= 0; --i) {
u64 seq = le64_to_cpu(b->keys.set[i].data->journal_seq);
if (seq) {
bch_journal_flush_seq_async(&c->journal, seq, cl);
break;
}
}
}
|