summaryrefslogtreecommitdiff
path: root/inc/shared/matrix.h
blob: 7574edfdbc8d3266400009c46190f0e7bbd61eae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#ifndef _Q_MATRIX_H
#define _Q_MATRIX_H

/* Linear algebra - vectors and matrices: */

typedef float vec_t;
typedef vec_t vec2_t[2];
typedef vec_t vec3_t[3];
typedef vec_t vec4_t[4];
typedef vec_t vec5_t[5];

typedef struct {
    union {
	vec_t   i[3][3];
	vec_t	array[9];
    };
} mat3_t;

typedef struct {
    union {
	vec_t   i[4][4];
	vec_t	flat[16];
    };
} mat4_t;

#define DotProduct(x,y)         ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2])

#define CrossProduct(v1,v2,cross) \
        ((cross)[0]=(v1)[1]*(v2)[2]-(v1)[2]*(v2)[1], \
         (cross)[1]=(v1)[2]*(v2)[0]-(v1)[0]*(v2)[2], \
         (cross)[2]=(v1)[0]*(v2)[1]-(v1)[1]*(v2)[0])

#define VectorSubtract(a,b,c) \
        ((c)[0]=(a)[0]-(b)[0], \
         (c)[1]=(a)[1]-(b)[1], \
         (c)[2]=(a)[2]-(b)[2])

#define VectorAdd(a,b,c) \
        ((c)[0]=(a)[0]+(b)[0], \
         (c)[1]=(a)[1]+(b)[1], \
         (c)[2]=(a)[2]+(b)[2])

#define VectorAdd3(a,b,c,d) \
        ((d)[0]=(a)[0]+(b)[0]+(c)[0], \
         (d)[1]=(a)[1]+(b)[1]+(c)[1], \
         (d)[2]=(a)[2]+(b)[2]+(c)[2])

#define VectorCopy(a,b)     ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
#define VectorClear(a)      ((a)[0]=(a)[1]=(a)[2]=0)
#define VectorNegate(a,b)   ((b)[0]=-(a)[0],(b)[1]=-(a)[1],(b)[2]=-(a)[2])
#define VectorInverse(a)    ((a)[0]=-(a)[0],(a)[1]=-(a)[1],(a)[2]=-(a)[2])
#define VectorSet(v, x, y, z)   ((v)[0]=(x),(v)[1]=(y),(v)[2]=(z))
#define VectorAvg(a,b,c) \
        ((c)[0]=((a)[0]+(b)[0])*0.5f, \
         (c)[1]=((a)[1]+(b)[1])*0.5f, \
         (c)[2]=((a)[2]+(b)[2])*0.5f)
#define VectorMA(a,b,c,d) \
        ((d)[0]=(a)[0]+(b)*(c)[0], \
         (d)[1]=(a)[1]+(b)*(c)[1], \
         (d)[2]=(a)[2]+(b)*(c)[2])
#define VectorVectorMA(a,b,c,d) \
        ((d)[0]=(a)[0]+(b)[0]*(c)[0], \
         (d)[1]=(a)[1]+(b)[1]*(c)[1], \
         (d)[2]=(a)[2]+(b)[2]*(c)[2])
#define VectorEmpty(v) ((v)[0]==0&&(v)[1]==0&&(v)[2]==0)
#define VectorCompare(v1,v2)    ((v1)[0]==(v2)[0]&&(v1)[1]==(v2)[1]&&(v1)[2]==(v2)[2])
#define VectorLength(v)		    sqrt(DotProduct((v),(v)))
#define VectorLengthSquared(v)      DotProduct((v),(v))

#define VectorScale(in,scale,out) \
        ((out)[0]=(in)[0]*(scale), \
         (out)[1]=(in)[1]*(scale), \
         (out)[2]=(in)[2]*(scale))
#define VectorVectorScale(in,scale,out) \
        ((out)[0]=(in)[0]*(scale)[0], \
         (out)[1]=(in)[1]*(scale)[1], \
         (out)[2]=(in)[2]*(scale)[2])

#define VectorScaleAcc(in,scale,out) \
        ((out)[0]+=(in)[0]*(scale), \
         (out)[1]+=(in)[1]*(scale), \
         (out)[2]+=(in)[2]*(scale))
#define VectorVectorScaleAcc(in,scale,out) \
        ((out)[0]+=(in)[0]*(scale)[0], \
         (out)[1]+=(in)[1]*(scale)[1], \
         (out)[2]+=(in)[2]*(scale)[2])

#define DistanceSquared(v1,v2) \
        (((v1)[0]-(v2)[0])*((v1)[0]-(v2)[0])+ \
        ((v1)[1]-(v2)[1])*((v1)[1]-(v2)[1])+ \
        ((v1)[2]-(v2)[2])*((v1)[2]-(v2)[2]))
#define Distance(v1,v2) (sqrt(DistanceSquared(v1,v2)))
#define LerpAngles(a,b,c,d) \
        ((d)[0]=LerpAngle((a)[0],(b)[0],c), \
         (d)[1]=LerpAngle((a)[1],(b)[1],c), \
         (d)[2]=LerpAngle((a)[2],(b)[2],c))

#define LerpVector(a,b,c,d) \
    ((d)[0]=(a)[0]+(c)*((b)[0]-(a)[0]), \
     (d)[1]=(a)[1]+(c)*((b)[1]-(a)[1]), \
     (d)[2]=(a)[2]+(c)*((b)[2]-(a)[2]))

#define LerpVector2(a,b,c,d,e)		    \
    (VectorClear(e),			    \
     VectorScaleAcc(a, c, e),		    \
     VectorScaleAcc(b, d, e))

#define PlaneDiff(v,p)   (DotProduct(v,(p)->normal)-(p)->dist)

#define Vector4Subtract(a,b,c)  ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2],(c)[3]=(a)[3]-(b)[3])
#define Vector4Add(a,b,c)       ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2],(c)[3]=(a)[3]+(b)[3])
#define Vector4Copy(a,b)        ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define Vector4Clear(a)         ((a)[0]=(a)[1]=(a)[2]=(a)[3]=0)
#define Vector4Negate(a,b)      ((b)[0]=-(a)[0],(b)[1]=-(a)[1],(b)[2]=-(a)[2],(b)[3]=-(a)[3])
#define Vector4Set(v, a, b, c, d)   ((v)[0]=(a),(v)[1]=(b),(v)[2]=(c),(v)[3]=(d))

void AngleVectors(vec3_t angles, vec3_t forward, vec3_t right, vec3_t up);
vec_t VectorNormalize(vec3_t v);        // returns vector length
vec_t VectorNormalize2(vec3_t v, vec3_t out);
mat4_t mul_mat4(const mat4_t *restrict a, const mat4_t *restrict b);

static inline void AnglesToAxis(vec3_t angles, vec3_t axis[3])
{
    AngleVectors(angles, axis[0], axis[1], axis[2]);
    VectorInverse(axis[1]);
}

static inline void TransposeAxis(vec3_t axis[3])
{
    vec_t temp;

    temp = axis[0][1];
    axis[0][1] = axis[1][0];
    axis[1][0] = temp;

    temp = axis[0][2];
    axis[0][2] = axis[2][0];
    axis[2][0] = temp;

    temp = axis[1][2];
    axis[1][2] = axis[2][1];
    axis[2][1] = temp;
}

static inline void RotatePoint(vec3_t point, vec3_t axis[3])
{
    vec3_t temp;

    VectorCopy(point, temp);
    point[0] = DotProduct(temp, axis[0]);
    point[1] = DotProduct(temp, axis[1]);
    point[2] = DotProduct(temp, axis[2]);
}

static inline mat3_t vec3_to_mat3(vec3_t v0, vec3_t v1, vec3_t v2)
{
    return (mat3_t) {
	.i = {
	    [0][0] = v0[0],
	    [0][1] = v0[1],
	    [0][2] = v0[2],

	    [1][0] = v1[0],
	    [1][1] = v1[1],
	    [1][2] = v1[2],

	    [2][0] = v2[0],
	    [2][1] = v2[1],
	    [2][2] = v2[2],
	},
    };
}

static inline mat4_t AffineMatrix(mat3_t m, vec3_t v)
{
    mat4_t a;

    for (unsigned i = 0; i < 3; i++) {
	for (unsigned j = 0; j < 3; j++)
	    a.i[i][j] = m.i[i][j];

	a.i[3][i] = v[i];
    }

    a.i[0][3] = 0;
    a.i[1][3] = 0;
    a.i[2][3] = 0;
    a.i[3][3] = 1;

    return a;
}

static const mat3_t mat3_identity = {
    .i = {
	[0][0] = 1,
	[1][1] = 1,
	[2][2] = 1,
    }
};

#endif /* _Q_MATRIX_H */